Whakaoti mō q
q=-1
q=5
Tohaina
Kua tāruatia ki te papatopenga
3q^{2}-12q-15=0
Tangohia te 15 mai i ngā taha e rua.
q^{2}-4q-5=0
Whakawehea ngā taha e rua ki te 3.
a+b=-4 ab=1\left(-5\right)=-5
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei q^{2}+aq+bq-5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-5 b=1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Ko te takirua anake pērā ko te otinga pūnaha.
\left(q^{2}-5q\right)+\left(q-5\right)
Tuhia anō te q^{2}-4q-5 hei \left(q^{2}-5q\right)+\left(q-5\right).
q\left(q-5\right)+q-5
Whakatauwehea atu q i te q^{2}-5q.
\left(q-5\right)\left(q+1\right)
Whakatauwehea atu te kīanga pātahi q-5 mā te whakamahi i te āhuatanga tātai tohatoha.
q=5 q=-1
Hei kimi otinga whārite, me whakaoti te q-5=0 me te q+1=0.
3q^{2}-12q=15
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
3q^{2}-12q-15=15-15
Me tango 15 mai i ngā taha e rua o te whārite.
3q^{2}-12q-15=0
Mā te tango i te 15 i a ia ake anō ka toe ko te 0.
q=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 3\left(-15\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -12 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-\left(-12\right)±\sqrt{144-4\times 3\left(-15\right)}}{2\times 3}
Pūrua -12.
q=\frac{-\left(-12\right)±\sqrt{144-12\left(-15\right)}}{2\times 3}
Whakareatia -4 ki te 3.
q=\frac{-\left(-12\right)±\sqrt{144+180}}{2\times 3}
Whakareatia -12 ki te -15.
q=\frac{-\left(-12\right)±\sqrt{324}}{2\times 3}
Tāpiri 144 ki te 180.
q=\frac{-\left(-12\right)±18}{2\times 3}
Tuhia te pūtakerua o te 324.
q=\frac{12±18}{2\times 3}
Ko te tauaro o -12 ko 12.
q=\frac{12±18}{6}
Whakareatia 2 ki te 3.
q=\frac{30}{6}
Nā, me whakaoti te whārite q=\frac{12±18}{6} ina he tāpiri te ±. Tāpiri 12 ki te 18.
q=5
Whakawehe 30 ki te 6.
q=-\frac{6}{6}
Nā, me whakaoti te whārite q=\frac{12±18}{6} ina he tango te ±. Tango 18 mai i 12.
q=-1
Whakawehe -6 ki te 6.
q=5 q=-1
Kua oti te whārite te whakatau.
3q^{2}-12q=15
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{3q^{2}-12q}{3}=\frac{15}{3}
Whakawehea ngā taha e rua ki te 3.
q^{2}+\left(-\frac{12}{3}\right)q=\frac{15}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
q^{2}-4q=\frac{15}{3}
Whakawehe -12 ki te 3.
q^{2}-4q=5
Whakawehe 15 ki te 3.
q^{2}-4q+\left(-2\right)^{2}=5+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
q^{2}-4q+4=5+4
Pūrua -2.
q^{2}-4q+4=9
Tāpiri 5 ki te 4.
\left(q-2\right)^{2}=9
Tauwehea q^{2}-4q+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q-2\right)^{2}}=\sqrt{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
q-2=3 q-2=-3
Whakarūnātia.
q=5 q=-1
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}