Tīpoka ki ngā ihirangi matua
Whakaoti mō q
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=1 ab=3\left(-14\right)=-42
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3q^{2}+aq+bq-14. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,42 -2,21 -3,14 -6,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -42.
-1+42=41 -2+21=19 -3+14=11 -6+7=1
Tātaihia te tapeke mō ia takirua.
a=-6 b=7
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(3q^{2}-6q\right)+\left(7q-14\right)
Tuhia anō te 3q^{2}+q-14 hei \left(3q^{2}-6q\right)+\left(7q-14\right).
3q\left(q-2\right)+7\left(q-2\right)
Tauwehea te 3q i te tuatahi me te 7 i te rōpū tuarua.
\left(q-2\right)\left(3q+7\right)
Whakatauwehea atu te kīanga pātahi q-2 mā te whakamahi i te āhuatanga tātai tohatoha.
q=2 q=-\frac{7}{3}
Hei kimi otinga whārite, me whakaoti te q-2=0 me te 3q+7=0.
3q^{2}+q-14=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
q=\frac{-1±\sqrt{1^{2}-4\times 3\left(-14\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 1 mō b, me -14 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-1±\sqrt{1-4\times 3\left(-14\right)}}{2\times 3}
Pūrua 1.
q=\frac{-1±\sqrt{1-12\left(-14\right)}}{2\times 3}
Whakareatia -4 ki te 3.
q=\frac{-1±\sqrt{1+168}}{2\times 3}
Whakareatia -12 ki te -14.
q=\frac{-1±\sqrt{169}}{2\times 3}
Tāpiri 1 ki te 168.
q=\frac{-1±13}{2\times 3}
Tuhia te pūtakerua o te 169.
q=\frac{-1±13}{6}
Whakareatia 2 ki te 3.
q=\frac{12}{6}
Nā, me whakaoti te whārite q=\frac{-1±13}{6} ina he tāpiri te ±. Tāpiri -1 ki te 13.
q=2
Whakawehe 12 ki te 6.
q=-\frac{14}{6}
Nā, me whakaoti te whārite q=\frac{-1±13}{6} ina he tango te ±. Tango 13 mai i -1.
q=-\frac{7}{3}
Whakahekea te hautanga \frac{-14}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
q=2 q=-\frac{7}{3}
Kua oti te whārite te whakatau.
3q^{2}+q-14=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3q^{2}+q-14-\left(-14\right)=-\left(-14\right)
Me tāpiri 14 ki ngā taha e rua o te whārite.
3q^{2}+q=-\left(-14\right)
Mā te tango i te -14 i a ia ake anō ka toe ko te 0.
3q^{2}+q=14
Tango -14 mai i 0.
\frac{3q^{2}+q}{3}=\frac{14}{3}
Whakawehea ngā taha e rua ki te 3.
q^{2}+\frac{1}{3}q=\frac{14}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
q^{2}+\frac{1}{3}q+\left(\frac{1}{6}\right)^{2}=\frac{14}{3}+\left(\frac{1}{6}\right)^{2}
Whakawehea te \frac{1}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{6}. Nā, tāpiria te pūrua o te \frac{1}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
q^{2}+\frac{1}{3}q+\frac{1}{36}=\frac{14}{3}+\frac{1}{36}
Pūruatia \frac{1}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
q^{2}+\frac{1}{3}q+\frac{1}{36}=\frac{169}{36}
Tāpiri \frac{14}{3} ki te \frac{1}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(q+\frac{1}{6}\right)^{2}=\frac{169}{36}
Tauwehea q^{2}+\frac{1}{3}q+\frac{1}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q+\frac{1}{6}\right)^{2}}=\sqrt{\frac{169}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
q+\frac{1}{6}=\frac{13}{6} q+\frac{1}{6}=-\frac{13}{6}
Whakarūnātia.
q=2 q=-\frac{7}{3}
Me tango \frac{1}{6} mai i ngā taha e rua o te whārite.