Tauwehe
\left(p+6\right)\left(3p+10\right)p^{2}
Aromātai
\left(p+6\right)\left(3p+10\right)p^{2}
Tohaina
Kua tāruatia ki te papatopenga
p^{2}\left(3p^{2}+28p+60\right)
Tauwehea te p^{2}.
a+b=28 ab=3\times 60=180
Whakaarohia te 3p^{2}+28p+60. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 3p^{2}+ap+bp+60. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,180 2,90 3,60 4,45 5,36 6,30 9,20 10,18 12,15
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 180.
1+180=181 2+90=92 3+60=63 4+45=49 5+36=41 6+30=36 9+20=29 10+18=28 12+15=27
Tātaihia te tapeke mō ia takirua.
a=10 b=18
Ko te otinga te takirua ka hoatu i te tapeke 28.
\left(3p^{2}+10p\right)+\left(18p+60\right)
Tuhia anō te 3p^{2}+28p+60 hei \left(3p^{2}+10p\right)+\left(18p+60\right).
p\left(3p+10\right)+6\left(3p+10\right)
Tauwehea te p i te tuatahi me te 6 i te rōpū tuarua.
\left(3p+10\right)\left(p+6\right)
Whakatauwehea atu te kīanga pātahi 3p+10 mā te whakamahi i te āhuatanga tātai tohatoha.
p^{2}\left(3p+10\right)\left(p+6\right)
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}