Tīpoka ki ngā ihirangi matua
Whakaoti mō p
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-8 ab=3\times 5=15
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3p^{2}+ap+bp+5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-15 -3,-5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 15.
-1-15=-16 -3-5=-8
Tātaihia te tapeke mō ia takirua.
a=-5 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(3p^{2}-5p\right)+\left(-3p+5\right)
Tuhia anō te 3p^{2}-8p+5 hei \left(3p^{2}-5p\right)+\left(-3p+5\right).
p\left(3p-5\right)-\left(3p-5\right)
Tauwehea te p i te tuatahi me te -1 i te rōpū tuarua.
\left(3p-5\right)\left(p-1\right)
Whakatauwehea atu te kīanga pātahi 3p-5 mā te whakamahi i te āhuatanga tātai tohatoha.
p=\frac{5}{3} p=1
Hei kimi otinga whārite, me whakaoti te 3p-5=0 me te p-1=0.
3p^{2}-8p+5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
p=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 3\times 5}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -8 mō b, me 5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-8\right)±\sqrt{64-4\times 3\times 5}}{2\times 3}
Pūrua -8.
p=\frac{-\left(-8\right)±\sqrt{64-12\times 5}}{2\times 3}
Whakareatia -4 ki te 3.
p=\frac{-\left(-8\right)±\sqrt{64-60}}{2\times 3}
Whakareatia -12 ki te 5.
p=\frac{-\left(-8\right)±\sqrt{4}}{2\times 3}
Tāpiri 64 ki te -60.
p=\frac{-\left(-8\right)±2}{2\times 3}
Tuhia te pūtakerua o te 4.
p=\frac{8±2}{2\times 3}
Ko te tauaro o -8 ko 8.
p=\frac{8±2}{6}
Whakareatia 2 ki te 3.
p=\frac{10}{6}
Nā, me whakaoti te whārite p=\frac{8±2}{6} ina he tāpiri te ±. Tāpiri 8 ki te 2.
p=\frac{5}{3}
Whakahekea te hautanga \frac{10}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
p=\frac{6}{6}
Nā, me whakaoti te whārite p=\frac{8±2}{6} ina he tango te ±. Tango 2 mai i 8.
p=1
Whakawehe 6 ki te 6.
p=\frac{5}{3} p=1
Kua oti te whārite te whakatau.
3p^{2}-8p+5=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3p^{2}-8p+5-5=-5
Me tango 5 mai i ngā taha e rua o te whārite.
3p^{2}-8p=-5
Mā te tango i te 5 i a ia ake anō ka toe ko te 0.
\frac{3p^{2}-8p}{3}=-\frac{5}{3}
Whakawehea ngā taha e rua ki te 3.
p^{2}-\frac{8}{3}p=-\frac{5}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
p^{2}-\frac{8}{3}p+\left(-\frac{4}{3}\right)^{2}=-\frac{5}{3}+\left(-\frac{4}{3}\right)^{2}
Whakawehea te -\frac{8}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{4}{3}. Nā, tāpiria te pūrua o te -\frac{4}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
p^{2}-\frac{8}{3}p+\frac{16}{9}=-\frac{5}{3}+\frac{16}{9}
Pūruatia -\frac{4}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
p^{2}-\frac{8}{3}p+\frac{16}{9}=\frac{1}{9}
Tāpiri -\frac{5}{3} ki te \frac{16}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(p-\frac{4}{3}\right)^{2}=\frac{1}{9}
Tauwehea p^{2}-\frac{8}{3}p+\frac{16}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{4}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
p-\frac{4}{3}=\frac{1}{3} p-\frac{4}{3}=-\frac{1}{3}
Whakarūnātia.
p=\frac{5}{3} p=1
Me tāpiri \frac{4}{3} ki ngā taha e rua o te whārite.