Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3n^{2}-7n+14=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 3\times 14}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -7 mō b, me 14 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-7\right)±\sqrt{49-4\times 3\times 14}}{2\times 3}
Pūrua -7.
n=\frac{-\left(-7\right)±\sqrt{49-12\times 14}}{2\times 3}
Whakareatia -4 ki te 3.
n=\frac{-\left(-7\right)±\sqrt{49-168}}{2\times 3}
Whakareatia -12 ki te 14.
n=\frac{-\left(-7\right)±\sqrt{-119}}{2\times 3}
Tāpiri 49 ki te -168.
n=\frac{-\left(-7\right)±\sqrt{119}i}{2\times 3}
Tuhia te pūtakerua o te -119.
n=\frac{7±\sqrt{119}i}{2\times 3}
Ko te tauaro o -7 ko 7.
n=\frac{7±\sqrt{119}i}{6}
Whakareatia 2 ki te 3.
n=\frac{7+\sqrt{119}i}{6}
Nā, me whakaoti te whārite n=\frac{7±\sqrt{119}i}{6} ina he tāpiri te ±. Tāpiri 7 ki te i\sqrt{119}.
n=\frac{-\sqrt{119}i+7}{6}
Nā, me whakaoti te whārite n=\frac{7±\sqrt{119}i}{6} ina he tango te ±. Tango i\sqrt{119} mai i 7.
n=\frac{7+\sqrt{119}i}{6} n=\frac{-\sqrt{119}i+7}{6}
Kua oti te whārite te whakatau.
3n^{2}-7n+14=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3n^{2}-7n+14-14=-14
Me tango 14 mai i ngā taha e rua o te whārite.
3n^{2}-7n=-14
Mā te tango i te 14 i a ia ake anō ka toe ko te 0.
\frac{3n^{2}-7n}{3}=-\frac{14}{3}
Whakawehea ngā taha e rua ki te 3.
n^{2}-\frac{7}{3}n=-\frac{14}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
n^{2}-\frac{7}{3}n+\left(-\frac{7}{6}\right)^{2}=-\frac{14}{3}+\left(-\frac{7}{6}\right)^{2}
Whakawehea te -\frac{7}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{6}. Nā, tāpiria te pūrua o te -\frac{7}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}-\frac{7}{3}n+\frac{49}{36}=-\frac{14}{3}+\frac{49}{36}
Pūruatia -\frac{7}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
n^{2}-\frac{7}{3}n+\frac{49}{36}=-\frac{119}{36}
Tāpiri -\frac{14}{3} ki te \frac{49}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(n-\frac{7}{6}\right)^{2}=-\frac{119}{36}
Tauwehea n^{2}-\frac{7}{3}n+\frac{49}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{7}{6}\right)^{2}}=\sqrt{-\frac{119}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n-\frac{7}{6}=\frac{\sqrt{119}i}{6} n-\frac{7}{6}=-\frac{\sqrt{119}i}{6}
Whakarūnātia.
n=\frac{7+\sqrt{119}i}{6} n=\frac{-\sqrt{119}i+7}{6}
Me tāpiri \frac{7}{6} ki ngā taha e rua o te whārite.