Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-5 ab=3\left(-2\right)=-6
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 3n^{2}+an+bn-2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-6 2,-3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
1-6=-5 2-3=-1
Tātaihia te tapeke mō ia takirua.
a=-6 b=1
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(3n^{2}-6n\right)+\left(n-2\right)
Tuhia anō te 3n^{2}-5n-2 hei \left(3n^{2}-6n\right)+\left(n-2\right).
3n\left(n-2\right)+n-2
Whakatauwehea atu 3n i te 3n^{2}-6n.
\left(n-2\right)\left(3n+1\right)
Whakatauwehea atu te kīanga pātahi n-2 mā te whakamahi i te āhuatanga tātai tohatoha.
3n^{2}-5n-2=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
n=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 3\left(-2\right)}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-\left(-5\right)±\sqrt{25-4\times 3\left(-2\right)}}{2\times 3}
Pūrua -5.
n=\frac{-\left(-5\right)±\sqrt{25-12\left(-2\right)}}{2\times 3}
Whakareatia -4 ki te 3.
n=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 3}
Whakareatia -12 ki te -2.
n=\frac{-\left(-5\right)±\sqrt{49}}{2\times 3}
Tāpiri 25 ki te 24.
n=\frac{-\left(-5\right)±7}{2\times 3}
Tuhia te pūtakerua o te 49.
n=\frac{5±7}{2\times 3}
Ko te tauaro o -5 ko 5.
n=\frac{5±7}{6}
Whakareatia 2 ki te 3.
n=\frac{12}{6}
Nā, me whakaoti te whārite n=\frac{5±7}{6} ina he tāpiri te ±. Tāpiri 5 ki te 7.
n=2
Whakawehe 12 ki te 6.
n=-\frac{2}{6}
Nā, me whakaoti te whārite n=\frac{5±7}{6} ina he tango te ±. Tango 7 mai i 5.
n=-\frac{1}{3}
Whakahekea te hautanga \frac{-2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
3n^{2}-5n-2=3\left(n-2\right)\left(n-\left(-\frac{1}{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 2 mō te x_{1} me te -\frac{1}{3} mō te x_{2}.
3n^{2}-5n-2=3\left(n-2\right)\left(n+\frac{1}{3}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
3n^{2}-5n-2=3\left(n-2\right)\times \frac{3n+1}{3}
Tāpiri \frac{1}{3} ki te n mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
3n^{2}-5n-2=\left(n-2\right)\left(3n+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 3 me te 3.