Tauwehe
3\left(n-60\right)\left(n-59\right)
Aromātai
3\left(n-60\right)\left(n-59\right)
Tohaina
Kua tāruatia ki te papatopenga
3\left(n^{2}-119n+3540\right)
Tauwehea te 3.
a+b=-119 ab=1\times 3540=3540
Whakaarohia te n^{2}-119n+3540. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei n^{2}+an+bn+3540. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-3540 -2,-1770 -3,-1180 -4,-885 -5,-708 -6,-590 -10,-354 -12,-295 -15,-236 -20,-177 -30,-118 -59,-60
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 3540.
-1-3540=-3541 -2-1770=-1772 -3-1180=-1183 -4-885=-889 -5-708=-713 -6-590=-596 -10-354=-364 -12-295=-307 -15-236=-251 -20-177=-197 -30-118=-148 -59-60=-119
Tātaihia te tapeke mō ia takirua.
a=-60 b=-59
Ko te otinga te takirua ka hoatu i te tapeke -119.
\left(n^{2}-60n\right)+\left(-59n+3540\right)
Tuhia anō te n^{2}-119n+3540 hei \left(n^{2}-60n\right)+\left(-59n+3540\right).
n\left(n-60\right)-59\left(n-60\right)
Tauwehea te n i te tuatahi me te -59 i te rōpū tuarua.
\left(n-60\right)\left(n-59\right)
Whakatauwehea atu te kīanga pātahi n-60 mā te whakamahi i te āhuatanga tātai tohatoha.
3\left(n-60\right)\left(n-59\right)
Me tuhi anō te kīanga whakatauwehe katoa.
3n^{2}-357n+10620=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
n=\frac{-\left(-357\right)±\sqrt{\left(-357\right)^{2}-4\times 3\times 10620}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-\left(-357\right)±\sqrt{127449-4\times 3\times 10620}}{2\times 3}
Pūrua -357.
n=\frac{-\left(-357\right)±\sqrt{127449-12\times 10620}}{2\times 3}
Whakareatia -4 ki te 3.
n=\frac{-\left(-357\right)±\sqrt{127449-127440}}{2\times 3}
Whakareatia -12 ki te 10620.
n=\frac{-\left(-357\right)±\sqrt{9}}{2\times 3}
Tāpiri 127449 ki te -127440.
n=\frac{-\left(-357\right)±3}{2\times 3}
Tuhia te pūtakerua o te 9.
n=\frac{357±3}{2\times 3}
Ko te tauaro o -357 ko 357.
n=\frac{357±3}{6}
Whakareatia 2 ki te 3.
n=\frac{360}{6}
Nā, me whakaoti te whārite n=\frac{357±3}{6} ina he tāpiri te ±. Tāpiri 357 ki te 3.
n=60
Whakawehe 360 ki te 6.
n=\frac{354}{6}
Nā, me whakaoti te whārite n=\frac{357±3}{6} ina he tango te ±. Tango 3 mai i 357.
n=59
Whakawehe 354 ki te 6.
3n^{2}-357n+10620=3\left(n-60\right)\left(n-59\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 60 mō te x_{1} me te 59 mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}