Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3n^{2}=11
Tāpirihia te 7 ki te 4, ka 11.
n^{2}=\frac{11}{3}
Whakawehea ngā taha e rua ki te 3.
n=\frac{\sqrt{33}}{3} n=-\frac{\sqrt{33}}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
3n^{2}=11
Tāpirihia te 7 ki te 4, ka 11.
3n^{2}-11=0
Tangohia te 11 mai i ngā taha e rua.
n=\frac{0±\sqrt{0^{2}-4\times 3\left(-11\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me -11 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\times 3\left(-11\right)}}{2\times 3}
Pūrua 0.
n=\frac{0±\sqrt{-12\left(-11\right)}}{2\times 3}
Whakareatia -4 ki te 3.
n=\frac{0±\sqrt{132}}{2\times 3}
Whakareatia -12 ki te -11.
n=\frac{0±2\sqrt{33}}{2\times 3}
Tuhia te pūtakerua o te 132.
n=\frac{0±2\sqrt{33}}{6}
Whakareatia 2 ki te 3.
n=\frac{\sqrt{33}}{3}
Nā, me whakaoti te whārite n=\frac{0±2\sqrt{33}}{6} ina he tāpiri te ±.
n=-\frac{\sqrt{33}}{3}
Nā, me whakaoti te whārite n=\frac{0±2\sqrt{33}}{6} ina he tango te ±.
n=\frac{\sqrt{33}}{3} n=-\frac{\sqrt{33}}{3}
Kua oti te whārite te whakatau.