Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3n^{2}+6n-13=-5
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
3n^{2}+6n-13-\left(-5\right)=-5-\left(-5\right)
Me tāpiri 5 ki ngā taha e rua o te whārite.
3n^{2}+6n-13-\left(-5\right)=0
Mā te tango i te -5 i a ia ake anō ka toe ko te 0.
3n^{2}+6n-8=0
Tango -5 mai i -13.
n=\frac{-6±\sqrt{6^{2}-4\times 3\left(-8\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 6 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-6±\sqrt{36-4\times 3\left(-8\right)}}{2\times 3}
Pūrua 6.
n=\frac{-6±\sqrt{36-12\left(-8\right)}}{2\times 3}
Whakareatia -4 ki te 3.
n=\frac{-6±\sqrt{36+96}}{2\times 3}
Whakareatia -12 ki te -8.
n=\frac{-6±\sqrt{132}}{2\times 3}
Tāpiri 36 ki te 96.
n=\frac{-6±2\sqrt{33}}{2\times 3}
Tuhia te pūtakerua o te 132.
n=\frac{-6±2\sqrt{33}}{6}
Whakareatia 2 ki te 3.
n=\frac{2\sqrt{33}-6}{6}
Nā, me whakaoti te whārite n=\frac{-6±2\sqrt{33}}{6} ina he tāpiri te ±. Tāpiri -6 ki te 2\sqrt{33}.
n=\frac{\sqrt{33}}{3}-1
Whakawehe -6+2\sqrt{33} ki te 6.
n=\frac{-2\sqrt{33}-6}{6}
Nā, me whakaoti te whārite n=\frac{-6±2\sqrt{33}}{6} ina he tango te ±. Tango 2\sqrt{33} mai i -6.
n=-\frac{\sqrt{33}}{3}-1
Whakawehe -6-2\sqrt{33} ki te 6.
n=\frac{\sqrt{33}}{3}-1 n=-\frac{\sqrt{33}}{3}-1
Kua oti te whārite te whakatau.
3n^{2}+6n-13=-5
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3n^{2}+6n-13-\left(-13\right)=-5-\left(-13\right)
Me tāpiri 13 ki ngā taha e rua o te whārite.
3n^{2}+6n=-5-\left(-13\right)
Mā te tango i te -13 i a ia ake anō ka toe ko te 0.
3n^{2}+6n=8
Tango -13 mai i -5.
\frac{3n^{2}+6n}{3}=\frac{8}{3}
Whakawehea ngā taha e rua ki te 3.
n^{2}+\frac{6}{3}n=\frac{8}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
n^{2}+2n=\frac{8}{3}
Whakawehe 6 ki te 3.
n^{2}+2n+1^{2}=\frac{8}{3}+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}+2n+1=\frac{8}{3}+1
Pūrua 1.
n^{2}+2n+1=\frac{11}{3}
Tāpiri \frac{8}{3} ki te 1.
\left(n+1\right)^{2}=\frac{11}{3}
Tauwehea n^{2}+2n+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+1\right)^{2}}=\sqrt{\frac{11}{3}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n+1=\frac{\sqrt{33}}{3} n+1=-\frac{\sqrt{33}}{3}
Whakarūnātia.
n=\frac{\sqrt{33}}{3}-1 n=-\frac{\sqrt{33}}{3}-1
Me tango 1 mai i ngā taha e rua o te whārite.