Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3n^{2}+47n-232=5
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
3n^{2}+47n-232-5=5-5
Me tango 5 mai i ngā taha e rua o te whārite.
3n^{2}+47n-232-5=0
Mā te tango i te 5 i a ia ake anō ka toe ko te 0.
3n^{2}+47n-237=0
Tango 5 mai i -232.
n=\frac{-47±\sqrt{47^{2}-4\times 3\left(-237\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 47 mō b, me -237 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-47±\sqrt{2209-4\times 3\left(-237\right)}}{2\times 3}
Pūrua 47.
n=\frac{-47±\sqrt{2209-12\left(-237\right)}}{2\times 3}
Whakareatia -4 ki te 3.
n=\frac{-47±\sqrt{2209+2844}}{2\times 3}
Whakareatia -12 ki te -237.
n=\frac{-47±\sqrt{5053}}{2\times 3}
Tāpiri 2209 ki te 2844.
n=\frac{-47±\sqrt{5053}}{6}
Whakareatia 2 ki te 3.
n=\frac{\sqrt{5053}-47}{6}
Nā, me whakaoti te whārite n=\frac{-47±\sqrt{5053}}{6} ina he tāpiri te ±. Tāpiri -47 ki te \sqrt{5053}.
n=\frac{-\sqrt{5053}-47}{6}
Nā, me whakaoti te whārite n=\frac{-47±\sqrt{5053}}{6} ina he tango te ±. Tango \sqrt{5053} mai i -47.
n=\frac{\sqrt{5053}-47}{6} n=\frac{-\sqrt{5053}-47}{6}
Kua oti te whārite te whakatau.
3n^{2}+47n-232=5
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3n^{2}+47n-232-\left(-232\right)=5-\left(-232\right)
Me tāpiri 232 ki ngā taha e rua o te whārite.
3n^{2}+47n=5-\left(-232\right)
Mā te tango i te -232 i a ia ake anō ka toe ko te 0.
3n^{2}+47n=237
Tango -232 mai i 5.
\frac{3n^{2}+47n}{3}=\frac{237}{3}
Whakawehea ngā taha e rua ki te 3.
n^{2}+\frac{47}{3}n=\frac{237}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
n^{2}+\frac{47}{3}n=79
Whakawehe 237 ki te 3.
n^{2}+\frac{47}{3}n+\left(\frac{47}{6}\right)^{2}=79+\left(\frac{47}{6}\right)^{2}
Whakawehea te \frac{47}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{47}{6}. Nā, tāpiria te pūrua o te \frac{47}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}+\frac{47}{3}n+\frac{2209}{36}=79+\frac{2209}{36}
Pūruatia \frac{47}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
n^{2}+\frac{47}{3}n+\frac{2209}{36}=\frac{5053}{36}
Tāpiri 79 ki te \frac{2209}{36}.
\left(n+\frac{47}{6}\right)^{2}=\frac{5053}{36}
Tauwehea n^{2}+\frac{47}{3}n+\frac{2209}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{47}{6}\right)^{2}}=\sqrt{\frac{5053}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n+\frac{47}{6}=\frac{\sqrt{5053}}{6} n+\frac{47}{6}=-\frac{\sqrt{5053}}{6}
Whakarūnātia.
n=\frac{\sqrt{5053}-47}{6} n=\frac{-\sqrt{5053}-47}{6}
Me tango \frac{47}{6} mai i ngā taha e rua o te whārite.