Whakaoti mō n
n=-20
n=19
Tohaina
Kua tāruatia ki te papatopenga
3n^{2}+3n+1-1141=0
Tangohia te 1141 mai i ngā taha e rua.
3n^{2}+3n-1140=0
Tangohia te 1141 i te 1, ka -1140.
n^{2}+n-380=0
Whakawehea ngā taha e rua ki te 3.
a+b=1 ab=1\left(-380\right)=-380
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei n^{2}+an+bn-380. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,380 -2,190 -4,95 -5,76 -10,38 -19,20
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -380.
-1+380=379 -2+190=188 -4+95=91 -5+76=71 -10+38=28 -19+20=1
Tātaihia te tapeke mō ia takirua.
a=-19 b=20
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(n^{2}-19n\right)+\left(20n-380\right)
Tuhia anō te n^{2}+n-380 hei \left(n^{2}-19n\right)+\left(20n-380\right).
n\left(n-19\right)+20\left(n-19\right)
Tauwehea te n i te tuatahi me te 20 i te rōpū tuarua.
\left(n-19\right)\left(n+20\right)
Whakatauwehea atu te kīanga pātahi n-19 mā te whakamahi i te āhuatanga tātai tohatoha.
n=19 n=-20
Hei kimi otinga whārite, me whakaoti te n-19=0 me te n+20=0.
3n^{2}+3n+1=1141
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
3n^{2}+3n+1-1141=1141-1141
Me tango 1141 mai i ngā taha e rua o te whārite.
3n^{2}+3n+1-1141=0
Mā te tango i te 1141 i a ia ake anō ka toe ko te 0.
3n^{2}+3n-1140=0
Tango 1141 mai i 1.
n=\frac{-3±\sqrt{3^{2}-4\times 3\left(-1140\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 3 mō b, me -1140 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-3±\sqrt{9-4\times 3\left(-1140\right)}}{2\times 3}
Pūrua 3.
n=\frac{-3±\sqrt{9-12\left(-1140\right)}}{2\times 3}
Whakareatia -4 ki te 3.
n=\frac{-3±\sqrt{9+13680}}{2\times 3}
Whakareatia -12 ki te -1140.
n=\frac{-3±\sqrt{13689}}{2\times 3}
Tāpiri 9 ki te 13680.
n=\frac{-3±117}{2\times 3}
Tuhia te pūtakerua o te 13689.
n=\frac{-3±117}{6}
Whakareatia 2 ki te 3.
n=\frac{114}{6}
Nā, me whakaoti te whārite n=\frac{-3±117}{6} ina he tāpiri te ±. Tāpiri -3 ki te 117.
n=19
Whakawehe 114 ki te 6.
n=-\frac{120}{6}
Nā, me whakaoti te whārite n=\frac{-3±117}{6} ina he tango te ±. Tango 117 mai i -3.
n=-20
Whakawehe -120 ki te 6.
n=19 n=-20
Kua oti te whārite te whakatau.
3n^{2}+3n+1=1141
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3n^{2}+3n+1-1=1141-1
Me tango 1 mai i ngā taha e rua o te whārite.
3n^{2}+3n=1141-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
3n^{2}+3n=1140
Tango 1 mai i 1141.
\frac{3n^{2}+3n}{3}=\frac{1140}{3}
Whakawehea ngā taha e rua ki te 3.
n^{2}+\frac{3}{3}n=\frac{1140}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
n^{2}+n=\frac{1140}{3}
Whakawehe 3 ki te 3.
n^{2}+n=380
Whakawehe 1140 ki te 3.
n^{2}+n+\left(\frac{1}{2}\right)^{2}=380+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}+n+\frac{1}{4}=380+\frac{1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
n^{2}+n+\frac{1}{4}=\frac{1521}{4}
Tāpiri 380 ki te \frac{1}{4}.
\left(n+\frac{1}{2}\right)^{2}=\frac{1521}{4}
Tauwehea n^{2}+n+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{1}{2}\right)^{2}}=\sqrt{\frac{1521}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n+\frac{1}{2}=\frac{39}{2} n+\frac{1}{2}=-\frac{39}{2}
Whakarūnātia.
n=19 n=-20
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}