Whakaoti mō n
n=-4
n=\frac{2}{3}\approx 0.666666667
Tohaina
Kua tāruatia ki te papatopenga
3n^{2}+10n-8=0
Tangohia te 8 mai i ngā taha e rua.
a+b=10 ab=3\left(-8\right)=-24
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3n^{2}+an+bn-8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,24 -2,12 -3,8 -4,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Tātaihia te tapeke mō ia takirua.
a=-2 b=12
Ko te otinga te takirua ka hoatu i te tapeke 10.
\left(3n^{2}-2n\right)+\left(12n-8\right)
Tuhia anō te 3n^{2}+10n-8 hei \left(3n^{2}-2n\right)+\left(12n-8\right).
n\left(3n-2\right)+4\left(3n-2\right)
Tauwehea te n i te tuatahi me te 4 i te rōpū tuarua.
\left(3n-2\right)\left(n+4\right)
Whakatauwehea atu te kīanga pātahi 3n-2 mā te whakamahi i te āhuatanga tātai tohatoha.
n=\frac{2}{3} n=-4
Hei kimi otinga whārite, me whakaoti te 3n-2=0 me te n+4=0.
3n^{2}+10n=8
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
3n^{2}+10n-8=8-8
Me tango 8 mai i ngā taha e rua o te whārite.
3n^{2}+10n-8=0
Mā te tango i te 8 i a ia ake anō ka toe ko te 0.
n=\frac{-10±\sqrt{10^{2}-4\times 3\left(-8\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 10 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-10±\sqrt{100-4\times 3\left(-8\right)}}{2\times 3}
Pūrua 10.
n=\frac{-10±\sqrt{100-12\left(-8\right)}}{2\times 3}
Whakareatia -4 ki te 3.
n=\frac{-10±\sqrt{100+96}}{2\times 3}
Whakareatia -12 ki te -8.
n=\frac{-10±\sqrt{196}}{2\times 3}
Tāpiri 100 ki te 96.
n=\frac{-10±14}{2\times 3}
Tuhia te pūtakerua o te 196.
n=\frac{-10±14}{6}
Whakareatia 2 ki te 3.
n=\frac{4}{6}
Nā, me whakaoti te whārite n=\frac{-10±14}{6} ina he tāpiri te ±. Tāpiri -10 ki te 14.
n=\frac{2}{3}
Whakahekea te hautanga \frac{4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
n=-\frac{24}{6}
Nā, me whakaoti te whārite n=\frac{-10±14}{6} ina he tango te ±. Tango 14 mai i -10.
n=-4
Whakawehe -24 ki te 6.
n=\frac{2}{3} n=-4
Kua oti te whārite te whakatau.
3n^{2}+10n=8
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{3n^{2}+10n}{3}=\frac{8}{3}
Whakawehea ngā taha e rua ki te 3.
n^{2}+\frac{10}{3}n=\frac{8}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
n^{2}+\frac{10}{3}n+\left(\frac{5}{3}\right)^{2}=\frac{8}{3}+\left(\frac{5}{3}\right)^{2}
Whakawehea te \frac{10}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{3}. Nā, tāpiria te pūrua o te \frac{5}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}+\frac{10}{3}n+\frac{25}{9}=\frac{8}{3}+\frac{25}{9}
Pūruatia \frac{5}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
n^{2}+\frac{10}{3}n+\frac{25}{9}=\frac{49}{9}
Tāpiri \frac{8}{3} ki te \frac{25}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(n+\frac{5}{3}\right)^{2}=\frac{49}{9}
Tauwehea n^{2}+\frac{10}{3}n+\frac{25}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{5}{3}\right)^{2}}=\sqrt{\frac{49}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n+\frac{5}{3}=\frac{7}{3} n+\frac{5}{3}=-\frac{7}{3}
Whakarūnātia.
n=\frac{2}{3} n=-4
Me tango \frac{5}{3} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}