Whakaoti mō n
n = -\frac{11}{3} = -3\frac{2}{3} \approx -3.666666667
Tohaina
Kua tāruatia ki te papatopenga
3n+1=5\left(-2\right)
Tangohia te 1 i te 2, ka 1.
3n+1=-10
Whakareatia te 5 ki te -2, ka -10.
3n=-10-1
Tangohia te 1 mai i ngā taha e rua.
3n=-11
Tangohia te 1 i te -10, ka -11.
n=\frac{-11}{3}
Whakawehea ngā taha e rua ki te 3.
n=-\frac{11}{3}
Ka taea te hautanga \frac{-11}{3} te tuhi anō ko -\frac{11}{3} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}