Tauwehe
3mn\left(m-10\right)\left(m+6\right)
Aromātai
3mn\left(m-10\right)\left(m+6\right)
Tohaina
Kua tāruatia ki te papatopenga
3\left(m^{3}n-4m^{2}n-60mn\right)
Tauwehea te 3.
mn\left(m^{2}-4m-60\right)
Whakaarohia te m^{3}n-4m^{2}n-60mn. Tauwehea te mn.
a+b=-4 ab=1\left(-60\right)=-60
Whakaarohia te m^{2}-4m-60. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei m^{2}+am+bm-60. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -60.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Tātaihia te tapeke mō ia takirua.
a=-10 b=6
Ko te otinga te takirua ka hoatu i te tapeke -4.
\left(m^{2}-10m\right)+\left(6m-60\right)
Tuhia anō te m^{2}-4m-60 hei \left(m^{2}-10m\right)+\left(6m-60\right).
m\left(m-10\right)+6\left(m-10\right)
Tauwehea te m i te tuatahi me te 6 i te rōpū tuarua.
\left(m-10\right)\left(m+6\right)
Whakatauwehea atu te kīanga pātahi m-10 mā te whakamahi i te āhuatanga tātai tohatoha.
3mn\left(m-10\right)\left(m+6\right)
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}