Tīpoka ki ngā ihirangi matua
Whakaoti mō m
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3m^{2}+16m=-21
Me tāpiri te 16m ki ngā taha e rua.
3m^{2}+16m+21=0
Me tāpiri te 21 ki ngā taha e rua.
a+b=16 ab=3\times 21=63
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3m^{2}+am+bm+21. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,63 3,21 7,9
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 63.
1+63=64 3+21=24 7+9=16
Tātaihia te tapeke mō ia takirua.
a=7 b=9
Ko te otinga te takirua ka hoatu i te tapeke 16.
\left(3m^{2}+7m\right)+\left(9m+21\right)
Tuhia anō te 3m^{2}+16m+21 hei \left(3m^{2}+7m\right)+\left(9m+21\right).
m\left(3m+7\right)+3\left(3m+7\right)
Tauwehea te m i te tuatahi me te 3 i te rōpū tuarua.
\left(3m+7\right)\left(m+3\right)
Whakatauwehea atu te kīanga pātahi 3m+7 mā te whakamahi i te āhuatanga tātai tohatoha.
m=-\frac{7}{3} m=-3
Hei kimi otinga whārite, me whakaoti te 3m+7=0 me te m+3=0.
3m^{2}+16m=-21
Me tāpiri te 16m ki ngā taha e rua.
3m^{2}+16m+21=0
Me tāpiri te 21 ki ngā taha e rua.
m=\frac{-16±\sqrt{16^{2}-4\times 3\times 21}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 16 mō b, me 21 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-16±\sqrt{256-4\times 3\times 21}}{2\times 3}
Pūrua 16.
m=\frac{-16±\sqrt{256-12\times 21}}{2\times 3}
Whakareatia -4 ki te 3.
m=\frac{-16±\sqrt{256-252}}{2\times 3}
Whakareatia -12 ki te 21.
m=\frac{-16±\sqrt{4}}{2\times 3}
Tāpiri 256 ki te -252.
m=\frac{-16±2}{2\times 3}
Tuhia te pūtakerua o te 4.
m=\frac{-16±2}{6}
Whakareatia 2 ki te 3.
m=-\frac{14}{6}
Nā, me whakaoti te whārite m=\frac{-16±2}{6} ina he tāpiri te ±. Tāpiri -16 ki te 2.
m=-\frac{7}{3}
Whakahekea te hautanga \frac{-14}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
m=-\frac{18}{6}
Nā, me whakaoti te whārite m=\frac{-16±2}{6} ina he tango te ±. Tango 2 mai i -16.
m=-3
Whakawehe -18 ki te 6.
m=-\frac{7}{3} m=-3
Kua oti te whārite te whakatau.
3m^{2}+16m=-21
Me tāpiri te 16m ki ngā taha e rua.
\frac{3m^{2}+16m}{3}=-\frac{21}{3}
Whakawehea ngā taha e rua ki te 3.
m^{2}+\frac{16}{3}m=-\frac{21}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
m^{2}+\frac{16}{3}m=-7
Whakawehe -21 ki te 3.
m^{2}+\frac{16}{3}m+\left(\frac{8}{3}\right)^{2}=-7+\left(\frac{8}{3}\right)^{2}
Whakawehea te \frac{16}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{8}{3}. Nā, tāpiria te pūrua o te \frac{8}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}+\frac{16}{3}m+\frac{64}{9}=-7+\frac{64}{9}
Pūruatia \frac{8}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
m^{2}+\frac{16}{3}m+\frac{64}{9}=\frac{1}{9}
Tāpiri -7 ki te \frac{64}{9}.
\left(m+\frac{8}{3}\right)^{2}=\frac{1}{9}
Tauwehea m^{2}+\frac{16}{3}m+\frac{64}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+\frac{8}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m+\frac{8}{3}=\frac{1}{3} m+\frac{8}{3}=-\frac{1}{3}
Whakarūnātia.
m=-\frac{7}{3} m=-3
Me tango \frac{8}{3} mai i ngā taha e rua o te whārite.