Whakaoti mō m
m=\frac{2\sqrt{6}}{9}-\frac{2}{3}\approx -0.122335613
m=-\frac{2\sqrt{6}}{9}-\frac{2}{3}\approx -1.210997721
Tohaina
Kua tāruatia ki te papatopenga
3m^{2}+4m+1=\frac{5}{9}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
3m^{2}+4m+1-\frac{5}{9}=\frac{5}{9}-\frac{5}{9}
Me tango \frac{5}{9} mai i ngā taha e rua o te whārite.
3m^{2}+4m+1-\frac{5}{9}=0
Mā te tango i te \frac{5}{9} i a ia ake anō ka toe ko te 0.
3m^{2}+4m+\frac{4}{9}=0
Tango \frac{5}{9} mai i 1.
m=\frac{-4±\sqrt{4^{2}-4\times 3\times \frac{4}{9}}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 4 mō b, me \frac{4}{9} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-4±\sqrt{16-4\times 3\times \frac{4}{9}}}{2\times 3}
Pūrua 4.
m=\frac{-4±\sqrt{16-12\times \frac{4}{9}}}{2\times 3}
Whakareatia -4 ki te 3.
m=\frac{-4±\sqrt{16-\frac{16}{3}}}{2\times 3}
Whakareatia -12 ki te \frac{4}{9}.
m=\frac{-4±\sqrt{\frac{32}{3}}}{2\times 3}
Tāpiri 16 ki te -\frac{16}{3}.
m=\frac{-4±\frac{4\sqrt{6}}{3}}{2\times 3}
Tuhia te pūtakerua o te \frac{32}{3}.
m=\frac{-4±\frac{4\sqrt{6}}{3}}{6}
Whakareatia 2 ki te 3.
m=\frac{\frac{4\sqrt{6}}{3}-4}{6}
Nā, me whakaoti te whārite m=\frac{-4±\frac{4\sqrt{6}}{3}}{6} ina he tāpiri te ±. Tāpiri -4 ki te \frac{4\sqrt{6}}{3}.
m=\frac{2\sqrt{6}}{9}-\frac{2}{3}
Whakawehe -4+\frac{4\sqrt{6}}{3} ki te 6.
m=\frac{-\frac{4\sqrt{6}}{3}-4}{6}
Nā, me whakaoti te whārite m=\frac{-4±\frac{4\sqrt{6}}{3}}{6} ina he tango te ±. Tango \frac{4\sqrt{6}}{3} mai i -4.
m=-\frac{2\sqrt{6}}{9}-\frac{2}{3}
Whakawehe -4-\frac{4\sqrt{6}}{3} ki te 6.
m=\frac{2\sqrt{6}}{9}-\frac{2}{3} m=-\frac{2\sqrt{6}}{9}-\frac{2}{3}
Kua oti te whārite te whakatau.
3m^{2}+4m+1=\frac{5}{9}
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3m^{2}+4m+1-1=\frac{5}{9}-1
Me tango 1 mai i ngā taha e rua o te whārite.
3m^{2}+4m=\frac{5}{9}-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
3m^{2}+4m=-\frac{4}{9}
Tango 1 mai i \frac{5}{9}.
\frac{3m^{2}+4m}{3}=-\frac{\frac{4}{9}}{3}
Whakawehea ngā taha e rua ki te 3.
m^{2}+\frac{4}{3}m=-\frac{\frac{4}{9}}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
m^{2}+\frac{4}{3}m=-\frac{4}{27}
Whakawehe -\frac{4}{9} ki te 3.
m^{2}+\frac{4}{3}m+\left(\frac{2}{3}\right)^{2}=-\frac{4}{27}+\left(\frac{2}{3}\right)^{2}
Whakawehea te \frac{4}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{2}{3}. Nā, tāpiria te pūrua o te \frac{2}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}+\frac{4}{3}m+\frac{4}{9}=-\frac{4}{27}+\frac{4}{9}
Pūruatia \frac{2}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
m^{2}+\frac{4}{3}m+\frac{4}{9}=\frac{8}{27}
Tāpiri -\frac{4}{27} ki te \frac{4}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(m+\frac{2}{3}\right)^{2}=\frac{8}{27}
Tauwehea m^{2}+\frac{4}{3}m+\frac{4}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+\frac{2}{3}\right)^{2}}=\sqrt{\frac{8}{27}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m+\frac{2}{3}=\frac{2\sqrt{6}}{9} m+\frac{2}{3}=-\frac{2\sqrt{6}}{9}
Whakarūnātia.
m=\frac{2\sqrt{6}}{9}-\frac{2}{3} m=-\frac{2\sqrt{6}}{9}-\frac{2}{3}
Me tango \frac{2}{3} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}