Whakaoti mō m
m=-3n-\frac{11}{3}
Whakaoti mō n
n=-\frac{m}{3}-\frac{11}{9}
Tohaina
Kua tāruatia ki te papatopenga
3m=-11-9n
Tangohia te 9n mai i ngā taha e rua.
3m=-9n-11
He hanga arowhānui tō te whārite.
\frac{3m}{3}=\frac{-9n-11}{3}
Whakawehea ngā taha e rua ki te 3.
m=\frac{-9n-11}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
m=-3n-\frac{11}{3}
Whakawehe -11-9n ki te 3.
9n=-11-3m
Tangohia te 3m mai i ngā taha e rua.
9n=-3m-11
He hanga arowhānui tō te whārite.
\frac{9n}{9}=\frac{-3m-11}{9}
Whakawehea ngā taha e rua ki te 9.
n=\frac{-3m-11}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
n=-\frac{m}{3}-\frac{11}{9}
Whakawehe -11-3m ki te 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}