Tauwehe
3\left(k-3\right)\left(k-1\right)
Aromātai
3\left(k-3\right)\left(k-1\right)
Tohaina
Kua tāruatia ki te papatopenga
3\left(k^{2}-4k+3\right)
Tauwehea te 3.
a+b=-4 ab=1\times 3=3
Whakaarohia te k^{2}-4k+3. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei k^{2}+ak+bk+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-3 b=-1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(k^{2}-3k\right)+\left(-k+3\right)
Tuhia anō te k^{2}-4k+3 hei \left(k^{2}-3k\right)+\left(-k+3\right).
k\left(k-3\right)-\left(k-3\right)
Tauwehea te k i te tuatahi me te -1 i te rōpū tuarua.
\left(k-3\right)\left(k-1\right)
Whakatauwehea atu te kīanga pātahi k-3 mā te whakamahi i te āhuatanga tātai tohatoha.
3\left(k-3\right)\left(k-1\right)
Me tuhi anō te kīanga whakatauwehe katoa.
3k^{2}-12k+9=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
k=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 3\times 9}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
k=\frac{-\left(-12\right)±\sqrt{144-4\times 3\times 9}}{2\times 3}
Pūrua -12.
k=\frac{-\left(-12\right)±\sqrt{144-12\times 9}}{2\times 3}
Whakareatia -4 ki te 3.
k=\frac{-\left(-12\right)±\sqrt{144-108}}{2\times 3}
Whakareatia -12 ki te 9.
k=\frac{-\left(-12\right)±\sqrt{36}}{2\times 3}
Tāpiri 144 ki te -108.
k=\frac{-\left(-12\right)±6}{2\times 3}
Tuhia te pūtakerua o te 36.
k=\frac{12±6}{2\times 3}
Ko te tauaro o -12 ko 12.
k=\frac{12±6}{6}
Whakareatia 2 ki te 3.
k=\frac{18}{6}
Nā, me whakaoti te whārite k=\frac{12±6}{6} ina he tāpiri te ±. Tāpiri 12 ki te 6.
k=3
Whakawehe 18 ki te 6.
k=\frac{6}{6}
Nā, me whakaoti te whārite k=\frac{12±6}{6} ina he tango te ±. Tango 6 mai i 12.
k=1
Whakawehe 6 ki te 6.
3k^{2}-12k+9=3\left(k-3\right)\left(k-1\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 3 mō te x_{1} me te 1 mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}