Tīpoka ki ngā ihirangi matua
Whakaoti mō k
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3k^{2}+11k+16=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
k=\frac{-11±\sqrt{11^{2}-4\times 3\times 16}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 11 mō b, me 16 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-11±\sqrt{121-4\times 3\times 16}}{2\times 3}
Pūrua 11.
k=\frac{-11±\sqrt{121-12\times 16}}{2\times 3}
Whakareatia -4 ki te 3.
k=\frac{-11±\sqrt{121-192}}{2\times 3}
Whakareatia -12 ki te 16.
k=\frac{-11±\sqrt{-71}}{2\times 3}
Tāpiri 121 ki te -192.
k=\frac{-11±\sqrt{71}i}{2\times 3}
Tuhia te pūtakerua o te -71.
k=\frac{-11±\sqrt{71}i}{6}
Whakareatia 2 ki te 3.
k=\frac{-11+\sqrt{71}i}{6}
Nā, me whakaoti te whārite k=\frac{-11±\sqrt{71}i}{6} ina he tāpiri te ±. Tāpiri -11 ki te i\sqrt{71}.
k=\frac{-\sqrt{71}i-11}{6}
Nā, me whakaoti te whārite k=\frac{-11±\sqrt{71}i}{6} ina he tango te ±. Tango i\sqrt{71} mai i -11.
k=\frac{-11+\sqrt{71}i}{6} k=\frac{-\sqrt{71}i-11}{6}
Kua oti te whārite te whakatau.
3k^{2}+11k+16=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3k^{2}+11k+16-16=-16
Me tango 16 mai i ngā taha e rua o te whārite.
3k^{2}+11k=-16
Mā te tango i te 16 i a ia ake anō ka toe ko te 0.
\frac{3k^{2}+11k}{3}=-\frac{16}{3}
Whakawehea ngā taha e rua ki te 3.
k^{2}+\frac{11}{3}k=-\frac{16}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
k^{2}+\frac{11}{3}k+\left(\frac{11}{6}\right)^{2}=-\frac{16}{3}+\left(\frac{11}{6}\right)^{2}
Whakawehea te \frac{11}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{11}{6}. Nā, tāpiria te pūrua o te \frac{11}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
k^{2}+\frac{11}{3}k+\frac{121}{36}=-\frac{16}{3}+\frac{121}{36}
Pūruatia \frac{11}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
k^{2}+\frac{11}{3}k+\frac{121}{36}=-\frac{71}{36}
Tāpiri -\frac{16}{3} ki te \frac{121}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(k+\frac{11}{6}\right)^{2}=-\frac{71}{36}
Tauwehea k^{2}+\frac{11}{3}k+\frac{121}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+\frac{11}{6}\right)^{2}}=\sqrt{-\frac{71}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
k+\frac{11}{6}=\frac{\sqrt{71}i}{6} k+\frac{11}{6}=-\frac{\sqrt{71}i}{6}
Whakarūnātia.
k=\frac{-11+\sqrt{71}i}{6} k=\frac{-\sqrt{71}i-11}{6}
Me tango \frac{11}{6} mai i ngā taha e rua o te whārite.