Whakaoti mō h
h = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
3 h = 7 ( \frac { 2 } { 7 } - \frac { 3 } { 7 } h ) - 10
Tohaina
Kua tāruatia ki te papatopenga
3h=7\times \frac{2}{7}+7\left(-\frac{3}{7}\right)h-10
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te \frac{2}{7}-\frac{3}{7}h.
3h=2+7\left(-\frac{3}{7}\right)h-10
Me whakakore te 7 me te 7.
3h=2-3h-10
Me whakakore te 7 me te 7.
3h=-8-3h
Tangohia te 10 i te 2, ka -8.
3h+3h=-8
Me tāpiri te 3h ki ngā taha e rua.
6h=-8
Pahekotia te 3h me 3h, ka 6h.
h=\frac{-8}{6}
Whakawehea ngā taha e rua ki te 6.
h=-\frac{4}{3}
Whakahekea te hautanga \frac{-8}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}