Whakaoti mō g
g=-2
g = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
Tohaina
Kua tāruatia ki te papatopenga
a+b=-2 ab=3\left(-16\right)=-48
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3g^{2}+ag+bg-16. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-48 2,-24 3,-16 4,-12 6,-8
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -48.
1-48=-47 2-24=-22 3-16=-13 4-12=-8 6-8=-2
Tātaihia te tapeke mō ia takirua.
a=-8 b=6
Ko te otinga te takirua ka hoatu i te tapeke -2.
\left(3g^{2}-8g\right)+\left(6g-16\right)
Tuhia anō te 3g^{2}-2g-16 hei \left(3g^{2}-8g\right)+\left(6g-16\right).
g\left(3g-8\right)+2\left(3g-8\right)
Tauwehea te g i te tuatahi me te 2 i te rōpū tuarua.
\left(3g-8\right)\left(g+2\right)
Whakatauwehea atu te kīanga pātahi 3g-8 mā te whakamahi i te āhuatanga tātai tohatoha.
g=\frac{8}{3} g=-2
Hei kimi otinga whārite, me whakaoti te 3g-8=0 me te g+2=0.
3g^{2}-2g-16=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
g=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\left(-16\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -2 mō b, me -16 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
g=\frac{-\left(-2\right)±\sqrt{4-4\times 3\left(-16\right)}}{2\times 3}
Pūrua -2.
g=\frac{-\left(-2\right)±\sqrt{4-12\left(-16\right)}}{2\times 3}
Whakareatia -4 ki te 3.
g=\frac{-\left(-2\right)±\sqrt{4+192}}{2\times 3}
Whakareatia -12 ki te -16.
g=\frac{-\left(-2\right)±\sqrt{196}}{2\times 3}
Tāpiri 4 ki te 192.
g=\frac{-\left(-2\right)±14}{2\times 3}
Tuhia te pūtakerua o te 196.
g=\frac{2±14}{2\times 3}
Ko te tauaro o -2 ko 2.
g=\frac{2±14}{6}
Whakareatia 2 ki te 3.
g=\frac{16}{6}
Nā, me whakaoti te whārite g=\frac{2±14}{6} ina he tāpiri te ±. Tāpiri 2 ki te 14.
g=\frac{8}{3}
Whakahekea te hautanga \frac{16}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
g=-\frac{12}{6}
Nā, me whakaoti te whārite g=\frac{2±14}{6} ina he tango te ±. Tango 14 mai i 2.
g=-2
Whakawehe -12 ki te 6.
g=\frac{8}{3} g=-2
Kua oti te whārite te whakatau.
3g^{2}-2g-16=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3g^{2}-2g-16-\left(-16\right)=-\left(-16\right)
Me tāpiri 16 ki ngā taha e rua o te whārite.
3g^{2}-2g=-\left(-16\right)
Mā te tango i te -16 i a ia ake anō ka toe ko te 0.
3g^{2}-2g=16
Tango -16 mai i 0.
\frac{3g^{2}-2g}{3}=\frac{16}{3}
Whakawehea ngā taha e rua ki te 3.
g^{2}-\frac{2}{3}g=\frac{16}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
g^{2}-\frac{2}{3}g+\left(-\frac{1}{3}\right)^{2}=\frac{16}{3}+\left(-\frac{1}{3}\right)^{2}
Whakawehea te -\frac{2}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{3}. Nā, tāpiria te pūrua o te -\frac{1}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
g^{2}-\frac{2}{3}g+\frac{1}{9}=\frac{16}{3}+\frac{1}{9}
Pūruatia -\frac{1}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
g^{2}-\frac{2}{3}g+\frac{1}{9}=\frac{49}{9}
Tāpiri \frac{16}{3} ki te \frac{1}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(g-\frac{1}{3}\right)^{2}=\frac{49}{9}
Tauwehea g^{2}-\frac{2}{3}g+\frac{1}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(g-\frac{1}{3}\right)^{2}}=\sqrt{\frac{49}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
g-\frac{1}{3}=\frac{7}{3} g-\frac{1}{3}=-\frac{7}{3}
Whakarūnātia.
g=\frac{8}{3} g=-2
Me tāpiri \frac{1}{3} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}