Whakaoti mō f
f=-3
f=2
Tohaina
Kua tāruatia ki te papatopenga
f^{2}+f-6=0
Whakawehea ngā taha e rua ki te 3.
a+b=1 ab=1\left(-6\right)=-6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei f^{2}+af+bf-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,6 -2,3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
-1+6=5 -2+3=1
Tātaihia te tapeke mō ia takirua.
a=-2 b=3
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(f^{2}-2f\right)+\left(3f-6\right)
Tuhia anō te f^{2}+f-6 hei \left(f^{2}-2f\right)+\left(3f-6\right).
f\left(f-2\right)+3\left(f-2\right)
Tauwehea te f i te tuatahi me te 3 i te rōpū tuarua.
\left(f-2\right)\left(f+3\right)
Whakatauwehea atu te kīanga pātahi f-2 mā te whakamahi i te āhuatanga tātai tohatoha.
f=2 f=-3
Hei kimi otinga whārite, me whakaoti te f-2=0 me te f+3=0.
3f^{2}+3f-18=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
f=\frac{-3±\sqrt{3^{2}-4\times 3\left(-18\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 3 mō b, me -18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
f=\frac{-3±\sqrt{9-4\times 3\left(-18\right)}}{2\times 3}
Pūrua 3.
f=\frac{-3±\sqrt{9-12\left(-18\right)}}{2\times 3}
Whakareatia -4 ki te 3.
f=\frac{-3±\sqrt{9+216}}{2\times 3}
Whakareatia -12 ki te -18.
f=\frac{-3±\sqrt{225}}{2\times 3}
Tāpiri 9 ki te 216.
f=\frac{-3±15}{2\times 3}
Tuhia te pūtakerua o te 225.
f=\frac{-3±15}{6}
Whakareatia 2 ki te 3.
f=\frac{12}{6}
Nā, me whakaoti te whārite f=\frac{-3±15}{6} ina he tāpiri te ±. Tāpiri -3 ki te 15.
f=2
Whakawehe 12 ki te 6.
f=-\frac{18}{6}
Nā, me whakaoti te whārite f=\frac{-3±15}{6} ina he tango te ±. Tango 15 mai i -3.
f=-3
Whakawehe -18 ki te 6.
f=2 f=-3
Kua oti te whārite te whakatau.
3f^{2}+3f-18=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3f^{2}+3f-18-\left(-18\right)=-\left(-18\right)
Me tāpiri 18 ki ngā taha e rua o te whārite.
3f^{2}+3f=-\left(-18\right)
Mā te tango i te -18 i a ia ake anō ka toe ko te 0.
3f^{2}+3f=18
Tango -18 mai i 0.
\frac{3f^{2}+3f}{3}=\frac{18}{3}
Whakawehea ngā taha e rua ki te 3.
f^{2}+\frac{3}{3}f=\frac{18}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
f^{2}+f=\frac{18}{3}
Whakawehe 3 ki te 3.
f^{2}+f=6
Whakawehe 18 ki te 3.
f^{2}+f+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
f^{2}+f+\frac{1}{4}=6+\frac{1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
f^{2}+f+\frac{1}{4}=\frac{25}{4}
Tāpiri 6 ki te \frac{1}{4}.
\left(f+\frac{1}{2}\right)^{2}=\frac{25}{4}
Tauwehea f^{2}+f+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(f+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
f+\frac{1}{2}=\frac{5}{2} f+\frac{1}{2}=-\frac{5}{2}
Whakarūnātia.
f=2 f=-3
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}