Tauwehe
\left(d+6\right)\left(3d+2\right)
Aromātai
\left(d+6\right)\left(3d+2\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=20 ab=3\times 12=36
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 3d^{2}+ad+bd+12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,36 2,18 3,12 4,9 6,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Tātaihia te tapeke mō ia takirua.
a=2 b=18
Ko te otinga te takirua ka hoatu i te tapeke 20.
\left(3d^{2}+2d\right)+\left(18d+12\right)
Tuhia anō te 3d^{2}+20d+12 hei \left(3d^{2}+2d\right)+\left(18d+12\right).
d\left(3d+2\right)+6\left(3d+2\right)
Tauwehea te d i te tuatahi me te 6 i te rōpū tuarua.
\left(3d+2\right)\left(d+6\right)
Whakatauwehea atu te kīanga pātahi 3d+2 mā te whakamahi i te āhuatanga tātai tohatoha.
3d^{2}+20d+12=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
d=\frac{-20±\sqrt{20^{2}-4\times 3\times 12}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
d=\frac{-20±\sqrt{400-4\times 3\times 12}}{2\times 3}
Pūrua 20.
d=\frac{-20±\sqrt{400-12\times 12}}{2\times 3}
Whakareatia -4 ki te 3.
d=\frac{-20±\sqrt{400-144}}{2\times 3}
Whakareatia -12 ki te 12.
d=\frac{-20±\sqrt{256}}{2\times 3}
Tāpiri 400 ki te -144.
d=\frac{-20±16}{2\times 3}
Tuhia te pūtakerua o te 256.
d=\frac{-20±16}{6}
Whakareatia 2 ki te 3.
d=-\frac{4}{6}
Nā, me whakaoti te whārite d=\frac{-20±16}{6} ina he tāpiri te ±. Tāpiri -20 ki te 16.
d=-\frac{2}{3}
Whakahekea te hautanga \frac{-4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
d=-\frac{36}{6}
Nā, me whakaoti te whārite d=\frac{-20±16}{6} ina he tango te ±. Tango 16 mai i -20.
d=-6
Whakawehe -36 ki te 6.
3d^{2}+20d+12=3\left(d-\left(-\frac{2}{3}\right)\right)\left(d-\left(-6\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{2}{3} mō te x_{1} me te -6 mō te x_{2}.
3d^{2}+20d+12=3\left(d+\frac{2}{3}\right)\left(d+6\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
3d^{2}+20d+12=3\times \frac{3d+2}{3}\left(d+6\right)
Tāpiri \frac{2}{3} ki te d mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
3d^{2}+20d+12=\left(3d+2\right)\left(d+6\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 3 me te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}