Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

p+q=-22 pq=3\left(-80\right)=-240
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 3b^{2}+pb+qb-80. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
1,-240 2,-120 3,-80 4,-60 5,-48 6,-40 8,-30 10,-24 12,-20 15,-16
I te mea kua tōraro te pq, he tauaro ngā tohu o p me q. I te mea kua tōraro te p+q, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -240.
1-240=-239 2-120=-118 3-80=-77 4-60=-56 5-48=-43 6-40=-34 8-30=-22 10-24=-14 12-20=-8 15-16=-1
Tātaihia te tapeke mō ia takirua.
p=-30 q=8
Ko te otinga te takirua ka hoatu i te tapeke -22.
\left(3b^{2}-30b\right)+\left(8b-80\right)
Tuhia anō te 3b^{2}-22b-80 hei \left(3b^{2}-30b\right)+\left(8b-80\right).
3b\left(b-10\right)+8\left(b-10\right)
Tauwehea te 3b i te tuatahi me te 8 i te rōpū tuarua.
\left(b-10\right)\left(3b+8\right)
Whakatauwehea atu te kīanga pātahi b-10 mā te whakamahi i te āhuatanga tātai tohatoha.
3b^{2}-22b-80=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
b=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\times 3\left(-80\right)}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
b=\frac{-\left(-22\right)±\sqrt{484-4\times 3\left(-80\right)}}{2\times 3}
Pūrua -22.
b=\frac{-\left(-22\right)±\sqrt{484-12\left(-80\right)}}{2\times 3}
Whakareatia -4 ki te 3.
b=\frac{-\left(-22\right)±\sqrt{484+960}}{2\times 3}
Whakareatia -12 ki te -80.
b=\frac{-\left(-22\right)±\sqrt{1444}}{2\times 3}
Tāpiri 484 ki te 960.
b=\frac{-\left(-22\right)±38}{2\times 3}
Tuhia te pūtakerua o te 1444.
b=\frac{22±38}{2\times 3}
Ko te tauaro o -22 ko 22.
b=\frac{22±38}{6}
Whakareatia 2 ki te 3.
b=\frac{60}{6}
Nā, me whakaoti te whārite b=\frac{22±38}{6} ina he tāpiri te ±. Tāpiri 22 ki te 38.
b=10
Whakawehe 60 ki te 6.
b=-\frac{16}{6}
Nā, me whakaoti te whārite b=\frac{22±38}{6} ina he tango te ±. Tango 38 mai i 22.
b=-\frac{8}{3}
Whakahekea te hautanga \frac{-16}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
3b^{2}-22b-80=3\left(b-10\right)\left(b-\left(-\frac{8}{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 10 mō te x_{1} me te -\frac{8}{3} mō te x_{2}.
3b^{2}-22b-80=3\left(b-10\right)\left(b+\frac{8}{3}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
3b^{2}-22b-80=3\left(b-10\right)\times \frac{3b+8}{3}
Tāpiri \frac{8}{3} ki te b mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
3b^{2}-22b-80=\left(b-10\right)\left(3b+8\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 3 me te 3.