Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3b^{2}+15b+2=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
b=\frac{-15±\sqrt{15^{2}-4\times 3\times 2}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
b=\frac{-15±\sqrt{225-4\times 3\times 2}}{2\times 3}
Pūrua 15.
b=\frac{-15±\sqrt{225-12\times 2}}{2\times 3}
Whakareatia -4 ki te 3.
b=\frac{-15±\sqrt{225-24}}{2\times 3}
Whakareatia -12 ki te 2.
b=\frac{-15±\sqrt{201}}{2\times 3}
Tāpiri 225 ki te -24.
b=\frac{-15±\sqrt{201}}{6}
Whakareatia 2 ki te 3.
b=\frac{\sqrt{201}-15}{6}
Nā, me whakaoti te whārite b=\frac{-15±\sqrt{201}}{6} ina he tāpiri te ±. Tāpiri -15 ki te \sqrt{201}.
b=\frac{\sqrt{201}}{6}-\frac{5}{2}
Whakawehe -15+\sqrt{201} ki te 6.
b=\frac{-\sqrt{201}-15}{6}
Nā, me whakaoti te whārite b=\frac{-15±\sqrt{201}}{6} ina he tango te ±. Tango \sqrt{201} mai i -15.
b=-\frac{\sqrt{201}}{6}-\frac{5}{2}
Whakawehe -15-\sqrt{201} ki te 6.
3b^{2}+15b+2=3\left(b-\left(\frac{\sqrt{201}}{6}-\frac{5}{2}\right)\right)\left(b-\left(-\frac{\sqrt{201}}{6}-\frac{5}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{5}{2}+\frac{\sqrt{201}}{6} mō te x_{1} me te -\frac{5}{2}-\frac{\sqrt{201}}{6} mō te x_{2}.