Tīpoka ki ngā ihirangi matua
Whakaoti mō a (complex solution)
Tick mark Image
Whakaoti mō a
Tick mark Image
Whakaoti mō c
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3ay^{3}d=ay^{3}+c
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
3ay^{3}d-ay^{3}=c
Tangohia te ay^{3} mai i ngā taha e rua.
3ady^{3}-ay^{3}=c
Whakaraupapatia anō ngā kīanga tau.
\left(3dy^{3}-y^{3}\right)a=c
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\frac{\left(3dy^{3}-y^{3}\right)a}{3dy^{3}-y^{3}}=\frac{c}{3dy^{3}-y^{3}}
Whakawehea ngā taha e rua ki te 3dy^{3}-y^{3}.
a=\frac{c}{3dy^{3}-y^{3}}
Mā te whakawehe ki te 3dy^{3}-y^{3} ka wetekia te whakareanga ki te 3dy^{3}-y^{3}.
a=\frac{c}{\left(3d-1\right)y^{3}}
Whakawehe c ki te 3dy^{3}-y^{3}.
3ay^{3}d=ay^{3}+c
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
3ay^{3}d-ay^{3}=c
Tangohia te ay^{3} mai i ngā taha e rua.
3ady^{3}-ay^{3}=c
Whakaraupapatia anō ngā kīanga tau.
\left(3dy^{3}-y^{3}\right)a=c
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\frac{\left(3dy^{3}-y^{3}\right)a}{3dy^{3}-y^{3}}=\frac{c}{3dy^{3}-y^{3}}
Whakawehea ngā taha e rua ki te 3dy^{3}-y^{3}.
a=\frac{c}{3dy^{3}-y^{3}}
Mā te whakawehe ki te 3dy^{3}-y^{3} ka wetekia te whakareanga ki te 3dy^{3}-y^{3}.
a=\frac{c}{\left(3d-1\right)y^{3}}
Whakawehe c ki te 3dy^{3}-y^{3}.