Tauwehe
3a\left(x-4\right)\left(x+1\right)
Aromātai
3a\left(x-4\right)\left(x+1\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\left(ax^{2}-3ax-4a\right)
Tauwehea te 3.
a\left(x^{2}-3x-4\right)
Whakaarohia te ax^{2}-3ax-4a. Tauwehea te a.
p+q=-3 pq=1\left(-4\right)=-4
Whakaarohia te x^{2}-3x-4. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+px+qx-4. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
1,-4 2,-2
I te mea kua tōraro te pq, he tauaro ngā tohu o p me q. I te mea kua tōraro te p+q, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -4.
1-4=-3 2-2=0
Tātaihia te tapeke mō ia takirua.
p=-4 q=1
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(x^{2}-4x\right)+\left(x-4\right)
Tuhia anō te x^{2}-3x-4 hei \left(x^{2}-4x\right)+\left(x-4\right).
x\left(x-4\right)+x-4
Whakatauwehea atu x i te x^{2}-4x.
\left(x-4\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
3a\left(x-4\right)\left(x+1\right)
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}