Tauwehe
\left(a-2\right)\left(3a-4\right)
Aromātai
\left(a-2\right)\left(3a-4\right)
Tohaina
Kua tāruatia ki te papatopenga
p+q=-10 pq=3\times 8=24
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 3a^{2}+pa+qa+8. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
-1,-24 -2,-12 -3,-8 -4,-6
I te mea kua tōrunga te pq, he ōrite te tohu o p me q. I te mea kua tōraro te p+q, he tōraro hoki a p me q. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Tātaihia te tapeke mō ia takirua.
p=-6 q=-4
Ko te otinga te takirua ka hoatu i te tapeke -10.
\left(3a^{2}-6a\right)+\left(-4a+8\right)
Tuhia anō te 3a^{2}-10a+8 hei \left(3a^{2}-6a\right)+\left(-4a+8\right).
3a\left(a-2\right)-4\left(a-2\right)
Tauwehea te 3a i te tuatahi me te -4 i te rōpū tuarua.
\left(a-2\right)\left(3a-4\right)
Whakatauwehea atu te kīanga pātahi a-2 mā te whakamahi i te āhuatanga tātai tohatoha.
3a^{2}-10a+8=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
a=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 3\times 8}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-10\right)±\sqrt{100-4\times 3\times 8}}{2\times 3}
Pūrua -10.
a=\frac{-\left(-10\right)±\sqrt{100-12\times 8}}{2\times 3}
Whakareatia -4 ki te 3.
a=\frac{-\left(-10\right)±\sqrt{100-96}}{2\times 3}
Whakareatia -12 ki te 8.
a=\frac{-\left(-10\right)±\sqrt{4}}{2\times 3}
Tāpiri 100 ki te -96.
a=\frac{-\left(-10\right)±2}{2\times 3}
Tuhia te pūtakerua o te 4.
a=\frac{10±2}{2\times 3}
Ko te tauaro o -10 ko 10.
a=\frac{10±2}{6}
Whakareatia 2 ki te 3.
a=\frac{12}{6}
Nā, me whakaoti te whārite a=\frac{10±2}{6} ina he tāpiri te ±. Tāpiri 10 ki te 2.
a=2
Whakawehe 12 ki te 6.
a=\frac{8}{6}
Nā, me whakaoti te whārite a=\frac{10±2}{6} ina he tango te ±. Tango 2 mai i 10.
a=\frac{4}{3}
Whakahekea te hautanga \frac{8}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
3a^{2}-10a+8=3\left(a-2\right)\left(a-\frac{4}{3}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 2 mō te x_{1} me te \frac{4}{3} mō te x_{2}.
3a^{2}-10a+8=3\left(a-2\right)\times \frac{3a-4}{3}
Tango \frac{4}{3} mai i a mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
3a^{2}-10a+8=\left(a-2\right)\left(3a-4\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 3 me te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}