Aromātai
6a
Kimi Pārōnaki e ai ki a
6
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
3 a ^ { \frac { 2 } { 3 } } \times 2 a ^ { \frac { 1 } { 3 } }
Tohaina
Kua tāruatia ki te papatopenga
3a^{1}\times 2
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te \frac{2}{3} me te \frac{1}{3} kia riro ai te 1.
3a\times 2
Tātaihia te a mā te pū o 1, kia riro ko a.
6a
Whakareatia te 3 ki te 2, ka 6.
\frac{\mathrm{d}}{\mathrm{d}a}(3a^{1}\times 2)
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te \frac{2}{3} me te \frac{1}{3} kia riro ai te 1.
\frac{\mathrm{d}}{\mathrm{d}a}(3a\times 2)
Tātaihia te a mā te pū o 1, kia riro ko a.
\frac{\mathrm{d}}{\mathrm{d}a}(6a)
Whakareatia te 3 ki te 2, ka 6.
6a^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
6a^{0}
Tango 1 mai i 1.
6\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
6
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}