Whakaoti mō a
a=-\frac{200b}{21}
Whakaoti mō b
b=-\frac{21a}{200}
Tohaina
Kua tāruatia ki te papatopenga
3a+400b-24a=600b
Tangohia te 24a mai i ngā taha e rua.
-21a+400b=600b
Pahekotia te 3a me -24a, ka -21a.
-21a=600b-400b
Tangohia te 400b mai i ngā taha e rua.
-21a=200b
Pahekotia te 600b me -400b, ka 200b.
\frac{-21a}{-21}=\frac{200b}{-21}
Whakawehea ngā taha e rua ki te -21.
a=\frac{200b}{-21}
Mā te whakawehe ki te -21 ka wetekia te whakareanga ki te -21.
a=-\frac{200b}{21}
Whakawehe 200b ki te -21.
3a+400b-600b=24a
Tangohia te 600b mai i ngā taha e rua.
3a-200b=24a
Pahekotia te 400b me -600b, ka -200b.
-200b=24a-3a
Tangohia te 3a mai i ngā taha e rua.
-200b=21a
Pahekotia te 24a me -3a, ka 21a.
\frac{-200b}{-200}=\frac{21a}{-200}
Whakawehea ngā taha e rua ki te -200.
b=\frac{21a}{-200}
Mā te whakawehe ki te -200 ka wetekia te whakareanga ki te -200.
b=-\frac{21a}{200}
Whakawehe 21a ki te -200.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}