Whakaoti mō X
X=-\frac{1}{2}=-0.5
Tohaina
Kua tāruatia ki te papatopenga
3X+4=\sqrt{X^{2}+6}
Me tango -4 mai i ngā taha e rua o te whārite.
\left(3X+4\right)^{2}=\left(\sqrt{X^{2}+6}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
9X^{2}+24X+16=\left(\sqrt{X^{2}+6}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3X+4\right)^{2}.
9X^{2}+24X+16=X^{2}+6
Tātaihia te \sqrt{X^{2}+6} mā te pū o 2, kia riro ko X^{2}+6.
9X^{2}+24X+16-X^{2}=6
Tangohia te X^{2} mai i ngā taha e rua.
8X^{2}+24X+16=6
Pahekotia te 9X^{2} me -X^{2}, ka 8X^{2}.
8X^{2}+24X+16-6=0
Tangohia te 6 mai i ngā taha e rua.
8X^{2}+24X+10=0
Tangohia te 6 i te 16, ka 10.
4X^{2}+12X+5=0
Whakawehea ngā taha e rua ki te 2.
a+b=12 ab=4\times 5=20
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 4X^{2}+aX+bX+5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,20 2,10 4,5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 20.
1+20=21 2+10=12 4+5=9
Tātaihia te tapeke mō ia takirua.
a=2 b=10
Ko te otinga te takirua ka hoatu i te tapeke 12.
\left(4X^{2}+2X\right)+\left(10X+5\right)
Tuhia anō te 4X^{2}+12X+5 hei \left(4X^{2}+2X\right)+\left(10X+5\right).
2X\left(2X+1\right)+5\left(2X+1\right)
Tauwehea te 2X i te tuatahi me te 5 i te rōpū tuarua.
\left(2X+1\right)\left(2X+5\right)
Whakatauwehea atu te kīanga pātahi 2X+1 mā te whakamahi i te āhuatanga tātai tohatoha.
X=-\frac{1}{2} X=-\frac{5}{2}
Hei kimi otinga whārite, me whakaoti te 2X+1=0 me te 2X+5=0.
3\left(-\frac{1}{2}\right)=\sqrt{\left(-\frac{1}{2}\right)^{2}+6}-4
Whakakapia te -\frac{1}{2} mō te X i te whārite 3X=\sqrt{X^{2}+6}-4.
-\frac{3}{2}=-\frac{3}{2}
Whakarūnātia. Ko te uara X=-\frac{1}{2} kua ngata te whārite.
3\left(-\frac{5}{2}\right)=\sqrt{\left(-\frac{5}{2}\right)^{2}+6}-4
Whakakapia te -\frac{5}{2} mō te X i te whārite 3X=\sqrt{X^{2}+6}-4.
-\frac{15}{2}=-\frac{1}{2}
Whakarūnātia. Ko te uara X=-\frac{5}{2} kāore e ngata ana ki te whārite.
X=-\frac{1}{2}
Ko te whārite 3X+4=\sqrt{X^{2}+6} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}