Tīpoka ki ngā ihirangi matua
Whakaoti mō m
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-m^{2}=-7-3
Tangohia te 3 mai i ngā taha e rua.
-m^{2}=-10
Tangohia te 3 i te -7, ka -10.
m^{2}=\frac{-10}{-1}
Whakawehea ngā taha e rua ki te -1.
m^{2}=10
Ka taea te hautanga \frac{-10}{-1} te whakamāmā ki te 10 mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
m=\sqrt{10} m=-\sqrt{10}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
3-m^{2}+7=0
Me tāpiri te 7 ki ngā taha e rua.
10-m^{2}=0
Tāpirihia te 3 ki te 7, ka 10.
-m^{2}+10=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
m=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 10}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 0 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{0±\sqrt{-4\left(-1\right)\times 10}}{2\left(-1\right)}
Pūrua 0.
m=\frac{0±\sqrt{4\times 10}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
m=\frac{0±\sqrt{40}}{2\left(-1\right)}
Whakareatia 4 ki te 10.
m=\frac{0±2\sqrt{10}}{2\left(-1\right)}
Tuhia te pūtakerua o te 40.
m=\frac{0±2\sqrt{10}}{-2}
Whakareatia 2 ki te -1.
m=-\sqrt{10}
Nā, me whakaoti te whārite m=\frac{0±2\sqrt{10}}{-2} ina he tāpiri te ±.
m=\sqrt{10}
Nā, me whakaoti te whārite m=\frac{0±2\sqrt{10}}{-2} ina he tango te ±.
m=-\sqrt{10} m=\sqrt{10}
Kua oti te whārite te whakatau.