Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-a^{2}-a+3=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
a=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 3}}{2\left(-1\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-1\right)±\sqrt{1+4\times 3}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
a=\frac{-\left(-1\right)±\sqrt{1+12}}{2\left(-1\right)}
Whakareatia 4 ki te 3.
a=\frac{-\left(-1\right)±\sqrt{13}}{2\left(-1\right)}
Tāpiri 1 ki te 12.
a=\frac{1±\sqrt{13}}{2\left(-1\right)}
Ko te tauaro o -1 ko 1.
a=\frac{1±\sqrt{13}}{-2}
Whakareatia 2 ki te -1.
a=\frac{\sqrt{13}+1}{-2}
Nā, me whakaoti te whārite a=\frac{1±\sqrt{13}}{-2} ina he tāpiri te ±. Tāpiri 1 ki te \sqrt{13}.
a=\frac{-\sqrt{13}-1}{2}
Whakawehe 1+\sqrt{13} ki te -2.
a=\frac{1-\sqrt{13}}{-2}
Nā, me whakaoti te whārite a=\frac{1±\sqrt{13}}{-2} ina he tango te ±. Tango \sqrt{13} mai i 1.
a=\frac{\sqrt{13}-1}{2}
Whakawehe 1-\sqrt{13} ki te -2.
-a^{2}-a+3=-\left(a-\frac{-\sqrt{13}-1}{2}\right)\left(a-\frac{\sqrt{13}-1}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-1-\sqrt{13}}{2} mō te x_{1} me te \frac{-1+\sqrt{13}}{2} mō te x_{2}.