Whakaoti mō y
y=\frac{2}{5}=0.4
Graph
Tohaina
Kua tāruatia ki te papatopenga
6-12y=-6+18y
Whakareatia ngā taha e rua o te whārite ki te 2.
6-12y-18y=-6
Tangohia te 18y mai i ngā taha e rua.
6-30y=-6
Pahekotia te -12y me -18y, ka -30y.
-30y=-6-6
Tangohia te 6 mai i ngā taha e rua.
-30y=-12
Tangohia te 6 i te -6, ka -12.
y=\frac{-12}{-30}
Whakawehea ngā taha e rua ki te -30.
y=\frac{2}{5}
Whakahekea te hautanga \frac{-12}{-30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}