Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

t^{2}-4t+3
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-4 ab=1\times 3=3
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei t^{2}+at+bt+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-3 b=-1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(t^{2}-3t\right)+\left(-t+3\right)
Tuhia anō te t^{2}-4t+3 hei \left(t^{2}-3t\right)+\left(-t+3\right).
t\left(t-3\right)-\left(t-3\right)
Tauwehea te t i te tuatahi me te -1 i te rōpū tuarua.
\left(t-3\right)\left(t-1\right)
Whakatauwehea atu te kīanga pātahi t-3 mā te whakamahi i te āhuatanga tātai tohatoha.
t^{2}-4t+3=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
t=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-\left(-4\right)±\sqrt{16-4\times 3}}{2}
Pūrua -4.
t=\frac{-\left(-4\right)±\sqrt{16-12}}{2}
Whakareatia -4 ki te 3.
t=\frac{-\left(-4\right)±\sqrt{4}}{2}
Tāpiri 16 ki te -12.
t=\frac{-\left(-4\right)±2}{2}
Tuhia te pūtakerua o te 4.
t=\frac{4±2}{2}
Ko te tauaro o -4 ko 4.
t=\frac{6}{2}
Nā, me whakaoti te whārite t=\frac{4±2}{2} ina he tāpiri te ±. Tāpiri 4 ki te 2.
t=3
Whakawehe 6 ki te 2.
t=\frac{2}{2}
Nā, me whakaoti te whārite t=\frac{4±2}{2} ina he tango te ±. Tango 2 mai i 4.
t=1
Whakawehe 2 ki te 2.
t^{2}-4t+3=\left(t-3\right)\left(t-1\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 3 mō te x_{1} me te 1 mō te x_{2}.