Aromātai
2
Tauwehe
2
Tohaina
Kua tāruatia ki te papatopenga
3-\frac{\left(3\times 4+1\right)\times 2}{4\left(2\times 2+1\right)}+0.3
Whakawehe \frac{3\times 4+1}{4} ki te \frac{2\times 2+1}{2} mā te whakarea \frac{3\times 4+1}{4} ki te tau huripoki o \frac{2\times 2+1}{2}.
3-\frac{1+3\times 4}{2\left(1+2\times 2\right)}+0.3
Me whakakore tahi te 2 i te taurunga me te tauraro.
3-\frac{1+12}{2\left(1+2\times 2\right)}+0.3
Whakareatia te 3 ki te 4, ka 12.
3-\frac{13}{2\left(1+2\times 2\right)}+0.3
Tāpirihia te 1 ki te 12, ka 13.
3-\frac{13}{2\left(1+4\right)}+0.3
Whakareatia te 2 ki te 2, ka 4.
3-\frac{13}{2\times 5}+0.3
Tāpirihia te 1 ki te 4, ka 5.
3-\frac{13}{10}+0.3
Whakareatia te 2 ki te 5, ka 10.
\frac{30}{10}-\frac{13}{10}+0.3
Me tahuri te 3 ki te hautau \frac{30}{10}.
\frac{30-13}{10}+0.3
Tā te mea he rite te tauraro o \frac{30}{10} me \frac{13}{10}, me tango rāua mā te tango i ō raua taurunga.
\frac{17}{10}+0.3
Tangohia te 13 i te 30, ka 17.
\frac{17}{10}+\frac{3}{10}
Me tahuri ki tau ā-ira 0.3 ki te hautau \frac{3}{10}.
\frac{17+3}{10}
Tā te mea he rite te tauraro o \frac{17}{10} me \frac{3}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{20}{10}
Tāpirihia te 17 ki te 3, ka 20.
2
Whakawehea te 20 ki te 10, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}