Whakaoti mō x
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
3-6-\left(-x\right)=4x
Hei kimi i te tauaro o 6-x, kimihia te tauaro o ia taurangi.
3-6+x=4x
Ko te tauaro o -x ko x.
-3+x=4x
Tangohia te 6 i te 3, ka -3.
-3+x-4x=0
Tangohia te 4x mai i ngā taha e rua.
-3-3x=0
Pahekotia te x me -4x, ka -3x.
-3x=3
Me tāpiri te 3 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=\frac{3}{-3}
Whakawehea ngā taha e rua ki te -3.
x=-1
Whakawehea te 3 ki te -3, kia riro ko -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}