Aromātai
-\frac{22}{9}\approx -2.444444444
Tauwehe
-\frac{22}{9} = -2\frac{4}{9} = -2.4444444444444446
Tohaina
Kua tāruatia ki te papatopenga
3-|\frac{5}{3}+\frac{4}{\frac{8}{4}+\frac{1}{4}}+2|
Me tahuri te 2 ki te hautau \frac{8}{4}.
3-|\frac{5}{3}+\frac{4}{\frac{8+1}{4}}+2|
Tā te mea he rite te tauraro o \frac{8}{4} me \frac{1}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
3-|\frac{5}{3}+\frac{4}{\frac{9}{4}}+2|
Tāpirihia te 8 ki te 1, ka 9.
3-|\frac{5}{3}+4\times \frac{4}{9}+2|
Whakawehe 4 ki te \frac{9}{4} mā te whakarea 4 ki te tau huripoki o \frac{9}{4}.
3-|\frac{5}{3}+\frac{4\times 4}{9}+2|
Tuhia te 4\times \frac{4}{9} hei hautanga kotahi.
3-|\frac{5}{3}+\frac{16}{9}+2|
Whakareatia te 4 ki te 4, ka 16.
3-|\frac{15}{9}+\frac{16}{9}+2|
Ko te maha noa iti rawa atu o 3 me 9 ko 9. Me tahuri \frac{5}{3} me \frac{16}{9} ki te hautau me te tautūnga 9.
3-|\frac{15+16}{9}+2|
Tā te mea he rite te tauraro o \frac{15}{9} me \frac{16}{9}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
3-|\frac{31}{9}+2|
Tāpirihia te 15 ki te 16, ka 31.
3-|\frac{31}{9}+\frac{18}{9}|
Me tahuri te 2 ki te hautau \frac{18}{9}.
3-|\frac{31+18}{9}|
Tā te mea he rite te tauraro o \frac{31}{9} me \frac{18}{9}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
3-|\frac{49}{9}|
Tāpirihia te 31 ki te 18, ka 49.
3-\frac{49}{9}
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o \frac{49}{9} ko \frac{49}{9}.
\frac{27}{9}-\frac{49}{9}
Me tahuri te 3 ki te hautau \frac{27}{9}.
\frac{27-49}{9}
Tā te mea he rite te tauraro o \frac{27}{9} me \frac{49}{9}, me tango rāua mā te tango i ō raua taurunga.
-\frac{22}{9}
Tangohia te 49 i te 27, ka -22.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}