Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3-\frac{4\left(3-\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}
Whakangāwaritia te tauraro o \frac{4}{3+\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te 3-\sqrt{5}.
3-\frac{4\left(3-\sqrt{5}\right)}{3^{2}-\left(\sqrt{5}\right)^{2}}
Whakaarohia te \left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3-\frac{4\left(3-\sqrt{5}\right)}{9-5}
Pūrua 3. Pūrua \sqrt{5}.
3-\frac{4\left(3-\sqrt{5}\right)}{4}
Tangohia te 5 i te 9, ka 4.
3-\left(3-\sqrt{5}\right)
Me whakakore te 4 me te 4.
3-3-\left(-\sqrt{5}\right)
Hei kimi i te tauaro o 3-\sqrt{5}, kimihia te tauaro o ia taurangi.
3-3+\sqrt{5}
Ko te tauaro o -\sqrt{5} ko \sqrt{5}.
\sqrt{5}
Tangohia te 3 i te 3, ka 0.