Whakaoti mō x
x<\frac{41}{28}
Graph
Tohaina
Kua tāruatia ki te papatopenga
60-4\left(2x+1\right)>20x+15
Me whakarea ngā taha e rua o te whārite ki te 20, arā, te tauraro pātahi he tino iti rawa te kitea o 5,4. I te mea he tōrunga te 20, kāore e huri te ahunga koreōrite.
60-8x-4>20x+15
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 2x+1.
56-8x>20x+15
Tangohia te 4 i te 60, ka 56.
56-8x-20x>15
Tangohia te 20x mai i ngā taha e rua.
56-28x>15
Pahekotia te -8x me -20x, ka -28x.
-28x>15-56
Tangohia te 56 mai i ngā taha e rua.
-28x>-41
Tangohia te 56 i te 15, ka -41.
x<\frac{-41}{-28}
Whakawehea ngā taha e rua ki te -28. I te mea he tōraro a -28, ka huri te ahunga koreōrite.
x<\frac{41}{28}
Ka taea te hautanga \frac{-41}{-28} te whakamāmā ki te \frac{41}{28} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}