Whakaoti mō y
y = \frac{14}{9} = 1\frac{5}{9} \approx 1.555555556
Graph
Tohaina
Kua tāruatia ki te papatopenga
3y+27=12y+13
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y+9.
3y+27-12y=13
Tangohia te 12y mai i ngā taha e rua.
-9y+27=13
Pahekotia te 3y me -12y, ka -9y.
-9y=13-27
Tangohia te 27 mai i ngā taha e rua.
-9y=-14
Tangohia te 27 i te 13, ka -14.
y=\frac{-14}{-9}
Whakawehea ngā taha e rua ki te -9.
y=\frac{14}{9}
Ka taea te hautanga \frac{-14}{-9} te whakamāmā ki te \frac{14}{9} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}