Whakaoti mō x
x=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-12-2\left(4x-3\right)=12\left(x-9\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-4.
3x-12-8x+6=12\left(x-9\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te 4x-3.
-5x-12+6=12\left(x-9\right)
Pahekotia te 3x me -8x, ka -5x.
-5x-6=12\left(x-9\right)
Tāpirihia te -12 ki te 6, ka -6.
-5x-6=12x-108
Whakamahia te āhuatanga tohatoha hei whakarea te 12 ki te x-9.
-5x-6-12x=-108
Tangohia te 12x mai i ngā taha e rua.
-17x-6=-108
Pahekotia te -5x me -12x, ka -17x.
-17x=-108+6
Me tāpiri te 6 ki ngā taha e rua.
-17x=-102
Tāpirihia te -108 ki te 6, ka -102.
x=\frac{-102}{-17}
Whakawehea ngā taha e rua ki te -17.
x=6
Whakawehea te -102 ki te -17, kia riro ko 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}