Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}-9=4x
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x^{2}-3.
3x^{2}-9-4x=0
Tangohia te 4x mai i ngā taha e rua.
3x^{2}-4x-9=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3\left(-9\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -4 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3\left(-9\right)}}{2\times 3}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-12\left(-9\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-4\right)±\sqrt{16+108}}{2\times 3}
Whakareatia -12 ki te -9.
x=\frac{-\left(-4\right)±\sqrt{124}}{2\times 3}
Tāpiri 16 ki te 108.
x=\frac{-\left(-4\right)±2\sqrt{31}}{2\times 3}
Tuhia te pūtakerua o te 124.
x=\frac{4±2\sqrt{31}}{2\times 3}
Ko te tauaro o -4 ko 4.
x=\frac{4±2\sqrt{31}}{6}
Whakareatia 2 ki te 3.
x=\frac{2\sqrt{31}+4}{6}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{31}}{6} ina he tāpiri te ±. Tāpiri 4 ki te 2\sqrt{31}.
x=\frac{\sqrt{31}+2}{3}
Whakawehe 4+2\sqrt{31} ki te 6.
x=\frac{4-2\sqrt{31}}{6}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{31}}{6} ina he tango te ±. Tango 2\sqrt{31} mai i 4.
x=\frac{2-\sqrt{31}}{3}
Whakawehe 4-2\sqrt{31} ki te 6.
x=\frac{\sqrt{31}+2}{3} x=\frac{2-\sqrt{31}}{3}
Kua oti te whārite te whakatau.
3x^{2}-9=4x
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x^{2}-3.
3x^{2}-9-4x=0
Tangohia te 4x mai i ngā taha e rua.
3x^{2}-4x=9
Me tāpiri te 9 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{3x^{2}-4x}{3}=\frac{9}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}-\frac{4}{3}x=\frac{9}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-\frac{4}{3}x=3
Whakawehe 9 ki te 3.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=3+\left(-\frac{2}{3}\right)^{2}
Whakawehea te -\frac{4}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{2}{3}. Nā, tāpiria te pūrua o te -\frac{2}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{4}{3}x+\frac{4}{9}=3+\frac{4}{9}
Pūruatia -\frac{2}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{31}{9}
Tāpiri 3 ki te \frac{4}{9}.
\left(x-\frac{2}{3}\right)^{2}=\frac{31}{9}
Tauwehea x^{2}-\frac{4}{3}x+\frac{4}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{31}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{2}{3}=\frac{\sqrt{31}}{3} x-\frac{2}{3}=-\frac{\sqrt{31}}{3}
Whakarūnātia.
x=\frac{\sqrt{31}+2}{3} x=\frac{2-\sqrt{31}}{3}
Me tāpiri \frac{2}{3} ki ngā taha e rua o te whārite.