Whakaoti mō x
x = \frac{13}{2} = 6\frac{1}{2} = 6.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+18-\left(3x-4\right)=8-4\left(3-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+6.
3x+18-3x-\left(-4\right)=8-4\left(3-x\right)
Hei kimi i te tauaro o 3x-4, kimihia te tauaro o ia taurangi.
3x+18-3x+4=8-4\left(3-x\right)
Ko te tauaro o -4 ko 4.
18+4=8-4\left(3-x\right)
Pahekotia te 3x me -3x, ka 0.
22=8-4\left(3-x\right)
Tāpirihia te 18 ki te 4, ka 22.
22=8-12+4x
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 3-x.
22=-4+4x
Tangohia te 12 i te 8, ka -4.
-4+4x=22
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
4x=22+4
Me tāpiri te 4 ki ngā taha e rua.
4x=26
Tāpirihia te 22 ki te 4, ka 26.
x=\frac{26}{4}
Whakawehea ngā taha e rua ki te 4.
x=\frac{13}{2}
Whakahekea te hautanga \frac{26}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}