Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(3x+3\right)\left(x-2\right)=2\left(x^{2}-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+1.
3x^{2}-3x-6=2\left(x^{2}-2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x+3 ki te x-2 ka whakakotahi i ngā kupu rite.
3x^{2}-3x-6=2x^{2}-4
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x^{2}-2.
3x^{2}-3x-6-2x^{2}=-4
Tangohia te 2x^{2} mai i ngā taha e rua.
x^{2}-3x-6=-4
Pahekotia te 3x^{2} me -2x^{2}, ka x^{2}.
x^{2}-3x-6+4=0
Me tāpiri te 4 ki ngā taha e rua.
x^{2}-3x-2=0
Tāpirihia te -6 ki te 4, ka -2.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-2\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -3 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-2\right)}}{2}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9+8}}{2}
Whakareatia -4 ki te -2.
x=\frac{-\left(-3\right)±\sqrt{17}}{2}
Tāpiri 9 ki te 8.
x=\frac{3±\sqrt{17}}{2}
Ko te tauaro o -3 ko 3.
x=\frac{\sqrt{17}+3}{2}
Nā, me whakaoti te whārite x=\frac{3±\sqrt{17}}{2} ina he tāpiri te ±. Tāpiri 3 ki te \sqrt{17}.
x=\frac{3-\sqrt{17}}{2}
Nā, me whakaoti te whārite x=\frac{3±\sqrt{17}}{2} ina he tango te ±. Tango \sqrt{17} mai i 3.
x=\frac{\sqrt{17}+3}{2} x=\frac{3-\sqrt{17}}{2}
Kua oti te whārite te whakatau.
\left(3x+3\right)\left(x-2\right)=2\left(x^{2}-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+1.
3x^{2}-3x-6=2\left(x^{2}-2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x+3 ki te x-2 ka whakakotahi i ngā kupu rite.
3x^{2}-3x-6=2x^{2}-4
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x^{2}-2.
3x^{2}-3x-6-2x^{2}=-4
Tangohia te 2x^{2} mai i ngā taha e rua.
x^{2}-3x-6=-4
Pahekotia te 3x^{2} me -2x^{2}, ka x^{2}.
x^{2}-3x=-4+6
Me tāpiri te 6 ki ngā taha e rua.
x^{2}-3x=2
Tāpirihia te -4 ki te 6, ka 2.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=2+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=2+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=\frac{17}{4}
Tāpiri 2 ki te \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{17}{4}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{17}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{\sqrt{17}}{2} x-\frac{3}{2}=-\frac{\sqrt{17}}{2}
Whakarūnātia.
x=\frac{\sqrt{17}+3}{2} x=\frac{3-\sqrt{17}}{2}
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.