Whakaoti mō a
a=\frac{21-9b}{5}
Whakaoti mō b
b=-\frac{5a}{9}+\frac{7}{3}
Tohaina
Kua tāruatia ki te papatopenga
3a+3b-6=\frac{1}{3}\left(4a+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te a+b-2.
3a+3b-6=\frac{4}{3}a+1
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{3} ki te 4a+3.
3a+3b-6-\frac{4}{3}a=1
Tangohia te \frac{4}{3}a mai i ngā taha e rua.
\frac{5}{3}a+3b-6=1
Pahekotia te 3a me -\frac{4}{3}a, ka \frac{5}{3}a.
\frac{5}{3}a-6=1-3b
Tangohia te 3b mai i ngā taha e rua.
\frac{5}{3}a=1-3b+6
Me tāpiri te 6 ki ngā taha e rua.
\frac{5}{3}a=7-3b
Tāpirihia te 1 ki te 6, ka 7.
\frac{\frac{5}{3}a}{\frac{5}{3}}=\frac{7-3b}{\frac{5}{3}}
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
a=\frac{7-3b}{\frac{5}{3}}
Mā te whakawehe ki te \frac{5}{3} ka wetekia te whakareanga ki te \frac{5}{3}.
a=\frac{21-9b}{5}
Whakawehe 7-3b ki te \frac{5}{3} mā te whakarea 7-3b ki te tau huripoki o \frac{5}{3}.
3a+3b-6=\frac{1}{3}\left(4a+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te a+b-2.
3a+3b-6=\frac{4}{3}a+1
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{3} ki te 4a+3.
3b-6=\frac{4}{3}a+1-3a
Tangohia te 3a mai i ngā taha e rua.
3b-6=-\frac{5}{3}a+1
Pahekotia te \frac{4}{3}a me -3a, ka -\frac{5}{3}a.
3b=-\frac{5}{3}a+1+6
Me tāpiri te 6 ki ngā taha e rua.
3b=-\frac{5}{3}a+7
Tāpirihia te 1 ki te 6, ka 7.
3b=-\frac{5a}{3}+7
He hanga arowhānui tō te whārite.
\frac{3b}{3}=\frac{-\frac{5a}{3}+7}{3}
Whakawehea ngā taha e rua ki te 3.
b=\frac{-\frac{5a}{3}+7}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
b=-\frac{5a}{9}+\frac{7}{3}
Whakawehe -\frac{5a}{3}+7 ki te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}