Whakaoti mō m
m=\frac{100000000000r^{2}\left(100rw^{2}+2943\right)}{667}
r\neq 0
Tohaina
Kua tāruatia ki te papatopenga
3\times 9.81r^{2}=6.67\times 10^{-11}m-w^{2}rr^{2}
Whakareatia ngā taha e rua o te whārite ki te r^{2}.
3\times 9.81r^{2}=6.67\times 10^{-11}m-w^{2}r^{3}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
29.43r^{2}=6.67\times 10^{-11}m-w^{2}r^{3}
Whakareatia te 3 ki te 9.81, ka 29.43.
29.43r^{2}=6.67\times \frac{1}{100000000000}m-w^{2}r^{3}
Tātaihia te 10 mā te pū o -11, kia riro ko \frac{1}{100000000000}.
29.43r^{2}=\frac{667}{10000000000000}m-w^{2}r^{3}
Whakareatia te 6.67 ki te \frac{1}{100000000000}, ka \frac{667}{10000000000000}.
\frac{667}{10000000000000}m-w^{2}r^{3}=29.43r^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{667}{10000000000000}m=29.43r^{2}+w^{2}r^{3}
Me tāpiri te w^{2}r^{3} ki ngā taha e rua.
\frac{667}{10000000000000}m=w^{2}r^{3}+\frac{2943r^{2}}{100}
He hanga arowhānui tō te whārite.
\frac{\frac{667}{10000000000000}m}{\frac{667}{10000000000000}}=\frac{r^{2}\left(rw^{2}+29.43\right)}{\frac{667}{10000000000000}}
Whakawehea ngā taha e rua o te whārite ki te \frac{667}{10000000000000}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
m=\frac{r^{2}\left(rw^{2}+29.43\right)}{\frac{667}{10000000000000}}
Mā te whakawehe ki te \frac{667}{10000000000000} ka wetekia te whakareanga ki te \frac{667}{10000000000000}.
m=\frac{10000000000000r^{2}\left(rw^{2}+29.43\right)}{667}
Whakawehe r^{2}\left(29.43+w^{2}r\right) ki te \frac{667}{10000000000000} mā te whakarea r^{2}\left(29.43+w^{2}r\right) ki te tau huripoki o \frac{667}{10000000000000}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}