Tīpoka ki ngā ihirangi matua
Whakaoti mō m
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\times 9.81r^{2}=6.67\times 10^{-11}m-w^{2}rr^{2}
Whakareatia ngā taha e rua o te whārite ki te r^{2}.
3\times 9.81r^{2}=6.67\times 10^{-11}m-w^{2}r^{3}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
29.43r^{2}=6.67\times 10^{-11}m-w^{2}r^{3}
Whakareatia te 3 ki te 9.81, ka 29.43.
29.43r^{2}=6.67\times \frac{1}{100000000000}m-w^{2}r^{3}
Tātaihia te 10 mā te pū o -11, kia riro ko \frac{1}{100000000000}.
29.43r^{2}=\frac{667}{10000000000000}m-w^{2}r^{3}
Whakareatia te 6.67 ki te \frac{1}{100000000000}, ka \frac{667}{10000000000000}.
\frac{667}{10000000000000}m-w^{2}r^{3}=29.43r^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{667}{10000000000000}m=29.43r^{2}+w^{2}r^{3}
Me tāpiri te w^{2}r^{3} ki ngā taha e rua.
\frac{667}{10000000000000}m=w^{2}r^{3}+\frac{2943r^{2}}{100}
He hanga arowhānui tō te whārite.
\frac{\frac{667}{10000000000000}m}{\frac{667}{10000000000000}}=\frac{r^{2}\left(rw^{2}+29.43\right)}{\frac{667}{10000000000000}}
Whakawehea ngā taha e rua o te whārite ki te \frac{667}{10000000000000}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
m=\frac{r^{2}\left(rw^{2}+29.43\right)}{\frac{667}{10000000000000}}
Mā te whakawehe ki te \frac{667}{10000000000000} ka wetekia te whakareanga ki te \frac{667}{10000000000000}.
m=\frac{10000000000000r^{2}\left(rw^{2}+29.43\right)}{667}
Whakawehe r^{2}\left(29.43+w^{2}r\right) ki te \frac{667}{10000000000000} mā te whakarea r^{2}\left(29.43+w^{2}r\right) ki te tau huripoki o \frac{667}{10000000000000}.