Whakaoti mō r
r=0
Tohaina
Kua tāruatia ki te papatopenga
18r-15+2r=3\left(r-5\right)-5r
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 6r-5.
20r-15=3\left(r-5\right)-5r
Pahekotia te 18r me 2r, ka 20r.
20r-15=3r-15-5r
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te r-5.
20r-15=-2r-15
Pahekotia te 3r me -5r, ka -2r.
20r-15+2r=-15
Me tāpiri te 2r ki ngā taha e rua.
22r-15=-15
Pahekotia te 20r me 2r, ka 22r.
22r=-15+15
Me tāpiri te 15 ki ngā taha e rua.
22r=0
Tāpirihia te -15 ki te 15, ka 0.
r=0
He ōrite te hua o ngā tau e rua ki 0 ina 0 tētahi o rāua te iti rawa. Tātemea kāore te 22 e ōrite ki 0, me ōrite pū te r ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}