Whakaoti mō x
x=\frac{1}{3}\approx 0.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\left(2x-3x-3\right)+8=4x-\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x+1.
3\left(-x-3\right)+8=4x-\left(x+3\right)
Pahekotia te 2x me -3x, ka -x.
-3x-9+8=4x-\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te -x-3.
-3x-1=4x-\left(x+3\right)
Tāpirihia te -9 ki te 8, ka -1.
-3x-1=4x-x-3
Hei kimi i te tauaro o x+3, kimihia te tauaro o ia taurangi.
-3x-1=3x-3
Pahekotia te 4x me -x, ka 3x.
-3x-1-3x=-3
Tangohia te 3x mai i ngā taha e rua.
-6x-1=-3
Pahekotia te -3x me -3x, ka -6x.
-6x=-3+1
Me tāpiri te 1 ki ngā taha e rua.
-6x=-2
Tāpirihia te -3 ki te 1, ka -2.
x=\frac{-2}{-6}
Whakawehea ngā taha e rua ki te -6.
x=\frac{1}{3}
Whakahekea te hautanga \frac{-2}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}