Aromātai
-11x-31
Whakaroha
-11x-31
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x-3-4\left(3x+2\right)-5\left(x+4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2x-1.
6x-3-12x-8-5\left(x+4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 3x+2.
-6x-3-8-5\left(x+4\right)
Pahekotia te 6x me -12x, ka -6x.
-6x-11-5\left(x+4\right)
Tangohia te 8 i te -3, ka -11.
-6x-11-5x-20
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te x+4.
-11x-11-20
Pahekotia te -6x me -5x, ka -11x.
-11x-31
Tangohia te 20 i te -11, ka -31.
6x-3-4\left(3x+2\right)-5\left(x+4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2x-1.
6x-3-12x-8-5\left(x+4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 3x+2.
-6x-3-8-5\left(x+4\right)
Pahekotia te 6x me -12x, ka -6x.
-6x-11-5\left(x+4\right)
Tangohia te 8 i te -3, ka -11.
-6x-11-5x-20
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te x+4.
-11x-11-20
Pahekotia te -6x me -5x, ka -11x.
-11x-31
Tangohia te 20 i te -11, ka -31.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}